scholarly journals Spectral Reflectance in Silver Birch Genotypes from Three Provenances in Finland

2020 ◽  
Vol 12 (17) ◽  
pp. 2677
Author(s):  
Maya Deepak ◽  
Sarita Keski-Saari ◽  
Laure Fauch ◽  
Lars Granlund ◽  
Elina Oksanen ◽  
...  

The goal of this study was to investigate the variation in the leaf spectral reflectance and its association with other leaf traits from 12 genotypes among three provenances of origin (populations) in a common garden for Finnish silver birch trees in 2015 and 2016. The spectral reflectance was measured in the laboratory from the detached leaves in the wavelength range of visible and near-infrared (VNIR, 400–1000 nm) and shortwave infrared (SWIR, 1000–2500 nm). The variation among the provenance was initially visualized with principal component analysis (PCA) and a clear separation among the provenances was detected with the discriminant analysis of principal components (DAPC) and partial least squares discriminant analysis (PLS-DA) depicting a less strong variation among the genotypes within the provenances. Wavelengths contributing to the separation of the genotypes and provenances were identified from the contribution plot of DAPC and the red edge was strongly related to the differences. Chlorophyll content showed clear provenance variation and was associated with the separation among the genotypes and provenances in the DAPC space. The normalized difference vegetation index (NDVI705,750) and chlorophyll reflectance index (CRI) showed clear significance among the provenances, whereas NDVI670,780 showed no variation. The variation in the chlorophyll content and the CRI and red edge-based NDVI indices indicated seasonal variation as the chlorophyll content starts increasing in early June. The correlation of foliar chlorophyll content and the chlorophyll-related spectral indices for the discrimination of provenances and genotypes are reported for the first time in a naturally occurring tree species consecutively for two years.


Author(s):  
Eniel Rodríguez-Machado ◽  
Osmany Aday-Díaz ◽  
Luis Hernández-Santana ◽  
Jorge Luís Soca-Muñoz ◽  
Rubén Orozco-Morales

Precision agriculture, making use of the spatial and temporal variability of cultivable land, allows farmers to refine fertilization, control field irrigation, estimate planting productivity, and detect pests and disease in crops. To that end, this paper identifies the spectral reflectance signature of brown rust (Puccinia melanocephala) and orange rust (Puccinia kuehnii), which contaminate sugar cane leaves (Saccharum spp.). By means of spectrometry, the mean values and standard deviations of the spectral reflectance signature are obtained for five levels of contamination of the leaves in each type of rust, observing the greatest differences between healthy and diseased leaves in the red (R) and near infrared (NIR) bands. With the results obtained, a multispectral camera was used to obtain images of the leaves and calculate the Normalized Difference Vegetation Index (NDVI). The results identified the presence of both plagues by differentiating healthy from contaminated leaves through the index value with an average difference of 11.9% for brown rust and 9.9% for orange rust.



Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1683-1689 ◽  
Author(s):  
Sindhuja Sankaran ◽  
Reza Ehsani ◽  
Sharon A. Inch ◽  
Randy C. Ploetz

Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis). In this work, we performed classification studies with visible-near infrared spectra of asymptomatic and symptomatic leaves from infected plants, as well as leaves from freeze-damaged and healthy plants, both of which were non-infected. The principal component scores computed from principal component analysis were used as input features in four classifiers: linear discriminant analysis, quadratic discriminant analysis (QDA), Naïve-Bayes classifier, and bagged decision trees (BDT). Among the classifiers, QDA and BDT resulted in classification accuracies of higher than 94% when classifying asymptomatic leaves from infected plants. All of the classifiers were able to discriminate symptomatic-infected leaves from freeze-damaged leaves. However, the false negatives mainly resulted from asymptomatic-infected leaves being classified as healthy. Analyses of average vegetation indices of freeze-damaged, healthy (non-infected), asymptomatic-infected, and symptomatic-infected leaves indicated that the normalized difference vegetation index and the simple ratio index were statistically different.



Author(s):  
H. R. Naveen ◽  
B. Balaji Naik ◽  
G. Sreenivas ◽  
Ajay Kumar ◽  
J. Adinarayana ◽  
...  

Aims/Objectives: Is to examine the use of spectral reflectance characteristics and explore the effectiveness of spectral indices under water and nitrogen stress environment. Study Design: Split-plot. Place and Duration of Study: Agro Climate Research Center, A.R.I., P.J.T.S. Agricultural University, Rajendranagar, Hyderabad, India in 2018-19. Methodology: Fixed amount of 5 cm depth of water was applied to each plot when the ratio of irrigation water and cumulative pan evaporation (IW/CPE) arrives at pre-determined levels of 0.6, 0.8 & 1.2 as main-plot and 3 nitrogen levels viz. 100, 200 & 300 kg N ha-1 as a subplot to create water and nitrogen stress environment. Spectral reflectance from each treatment was measured using Spectroradiometer and analyzed using statistical software package SPSS 17, SAS and trial version of UNSCRABLER. Results: At tasseling and dough stages, the reflectance pattern of maize was found to be higher in visible light spectrum of 400 to700 nm whereas lower in near-infrared region (700 to 900) in both underwater (IW/CPE ratio of 0.6) and nitrogen stress (100 kg N ha-1) environment as compared to moderate and no stress irrigation (IW/CPE ratio of 0.8 & 1.2) and nitrogen (200 and 300 kg N ha-1) treatments. The discriminant analysis of NDVI, GNDVI, WBI and SR indicated that 72.2% and 66.7% of the original grouped cases and 55.6% and 38.9% of the cross-validated grouped cases under irrigation and nitrogen levels, respectively were correctly classified. Conclusion: Hyperspectral remote sensing can be used as a tool to detect and quantify the water and nitrogen stress in maize non-destructively. Spectral vegetation indices viz. Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) were found effective to distinguish water and nitrogen stress severity in maize.



HortScience ◽  
2012 ◽  
Vol 47 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Yun-wen Wang ◽  
Bruce L. Dunn ◽  
Daryl B. Arnall

Nitrogen (N) deficiencies can significantly reduce plant growth as well as flower quantity and quality. However, excessive N application leads to increased production costs and may cause water contamination as a result of runoff. Ground-based remote sensing of plant chlorophyll content offers the possibility to rapidly and inexpensively estimate crop N status. The objective of this study was to test the reliability of three different Normalized Difference Vegetation Index (NDVI) measuring methods and Soil-Plant Analyses Development (SPAD) chlorophyll meter values as indicators of geranium (Pelargonium ×hortorum L.H. Bailey) N status. Two potted geranium cultivars, Rocky Mountain White and Rocky Mountain Dark Red, were supplied with N at 0, 50, 100, and 200 mg·L−1 levels, respectively. NDVI readings were measured at 45 cm above the canopy or media of individual plants or 45 cm above the canopy of a group of plants (four plants treated with the same N rate were placed together). Significant correlations existed between indirect chlorophyll content measurements of SPAD values and NDVI readings regardless of four-pot group or single-pot measurements with N application rates and leaf N concentration. Using a cross-validation technique in discriminant analysis, 70.8% to 79.2% of sample cases were correctly categorized to the corresponding N statuses including very deficient, deficient, and sufficient. Therefore, ground-based, non-destructive measurements of a chlorophyll meter and pocket NDVI unit were able to indicate N status. Considering that flower color can interfere with NDVI measurements, the chlorophyll meter may better determine N content when flowers are present.



2021 ◽  
pp. 1-7
Author(s):  
Ji-Jhong Chen ◽  
Shuyang Zhen ◽  
Youping Sun

Commercial optical chlorophyll meters estimate relative chlorophyll content using the ratio of transmitted red light and near-infrared (NIR) light emitted from a red light-emitting diode (LED) and an NIR LED. Normalized difference vegetation index (NDVI) sensors have red and NIR light detectors and may be used to estimate chlorophyll content by detecting the transmitted red and NIR light through leaves. In this study, leaf chlorophyll content of ‘Torrey’ buffaloberry (Shepherdia ×utahensis) plants treated with 0 mm [zero nitrogen (N)], 2 mm (medium N), or 4 mm (ample N) ammonium nitrate for 3 weeks were evaluated using two commercial chlorophyll meters and NDVI sensors. The absolute chlorophyll content was determined using chlorophyll extraction. Our results showed that plants receiving ample N and medium N had decreased transmitted red light (i.e., greater absorption in red light). Measurements of optical chlorophyll meters, NDVI sensors, and chlorophyll extraction similarly showed that plants receiving medium N and ample N had greater leaf chlorophyll content than those receiving zero N. Relative leaf chlorophyll content estimated using NDVI sensors correlated positively with those from the chlorophyll meters (P < 0.0001; r2 range, 0.56–0.82). Therefore, our results indicate that NDVI measurements are sensitive to leaf chlorophyll content. These NDVI sensors, or specialized sensors developed using similar principles, can be used to estimate the relative chlorophyll content of nursery crops and help growers adjust fertilization to improve plant growth and nutrient status.



2018 ◽  
Vol 8 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Miloš Barták ◽  
Kumud Bandhu Mishra ◽  
Michaela Marečková

Lichens, in polar and alpine regions, pass through repetitive dehydration and rehydration events over the years. The harsh environmental conditions affect the plasticity of lichen’s functional and structural features for their survival, in a species-specific way, and, thus, their optical and spectral characteristics. For an understanding on how dehydration affects lichens spectral reflectance, we measured visible (VIS) and near infrared (NIR) reflectance spectra of Dermatocarpon polyphyllizum, a foliose lichen species, from James Ross Island (Antarctica), during gradual dehydration from fully wet (relative water content (RWC) = 100%) to dry state (RWC = 0%), under laboratory conditions, and compared several derived reflectance indices (RIs) to RWC. We found a curvilinear relationship between RWC and range of RIs: water index (WI), photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), modified chlorophyll absorption in reflectance indices (MCARI and MCARI1), simple ratio pigment index (SRPI), normalized pigment chlorophyll index (NPCI), and a new NIR shoulder region spectral ratio index (NSRI). The index NDVI was initially increased with maxima around 70% RWC and it steadily declined with further desiccation, whereas PRI in-creased with desiccation and steeply falls when RWC was below 10%. The curvilinear relationship, for RIs versus RWC, was best fitted by polynomial regressions of second or third degree, and it was found that RWC showed very high correlation with WI (R2 = 0.94) that is followed by MCARI (R2 = 0.87), NDVI (R2 = 0.83), and MCARI (R2 = 0.81). The index NSRI, proposed for accessing structural deterioration, was almost invariable during dehydration with the least value of the coefficient of determination (R2 = 0.28). This may mean that lichen, Dermatocarpon polyphyllizum, activates protection mechanisms initially in response to the progression of dehydration; however, severe dehydration causes deactivation of photosynthesis and associated pigments without much affecting its structure.



Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.



2019 ◽  
Vol 11 (15) ◽  
pp. 1827 ◽  
Author(s):  
Paul V. Manley ◽  
Vasit Sagan ◽  
Felix B. Fritschi ◽  
Joel G. Burken

Explosives contaminate millions of hectares from various sources (partial detonations, improper storage, and release from production and transport) that can be life-threatening, e.g., landmines and unexploded ordnance. Exposure to and uptake of explosives can also negatively impact plant health, and these factors can be can be remotely sensed. Stress induction was remotely sensed via a whole-plant hyperspectral imaging system as two genotypes of Zea mays, a drought-susceptible hybrid and a drought-tolerant hybrid, and a forage Sorghum bicolor were grown in a greenhouse with one control group, one group maintained at 60% soil field capacity, and a third exposed to 250 mg kg−1 Royal Demolition Explosive (RDX). Green-Red Vegetation Index (GRVI), Photochemical Reflectance Index (PRI), Modified Red Edge Simple Ratio (MRESR), and Vogelmann Red Edge Index 1 (VREI1) were reduced due to presence of explosives. Principal component analyses of reflectance indices separated plants exposed to RDX from control and drought plants. Reflectance of Z. mays hybrids was increased from RDX in green and red wavelengths, while reduced in near-infrared wavelengths. Drought Z. mays reflectance was lower in green, red, and NIR regions. S. bicolor grown with RDX reflected more in green, red, and NIR wavelengths. The spectra and their derivatives will be beneficial for developing explosive-specific indices to accurately identify plants in contaminated soil. This study is the first to demonstrate potential to delineate subsurface explosives over large areas using remote sensing of vegetation with aerial-based hyperspectral systems.



2020 ◽  
Vol 12 (11) ◽  
pp. 1828
Author(s):  
Jerry Davis ◽  
Leonhard Blesius ◽  
Michelle Slocombe ◽  
Suzanne Maher ◽  
Michael Vasey ◽  
...  

The benefits of meadow restoration can be assessed by understanding the connections among geomorphology, hydrology, and vegetation; and multispectral imagery captured from unpiloted aerial systems (UASs) can provide the best method in terms of cost, resolution, and support for vegetation indices. Our field studies were conducted on northern Sierra montane meadows (with ≤70 km2 watershed area). The meadows exist in various stages of ecological restoration. Field survey methods included GPS + laser-leveling channel survey, cross-sections, LiDAR, vegetation sampling, soil measurements, and UAS imaging. A sensor captured calibrated blue (465–485 nm), green (550–570 nm), red (663–673 nm), near infrared (NIR) (820–860 nm), and red-edge (712–722 nm) bands at 5.5 cm resolution (as well as thermal at 81 cm resolution) and provided multispectral images and derivative vegetation indices such as the normalized difference vegetation index (NDVI) and red-edge chlorophyll index (Clre). This fine-scale imagery extended our morphometric assessment of post-restoration channel bedform patterns and sinuosity related to Carex-influenced soil properties and Salix influence, and also documented groundwater-related effects via Carex patterns evident from spring snowmelt images, as well as NDVI and Clre (derived from spring and summer images) in growing to senescent phenological stages. Carex was significantly associated with low bulk density and high soil moisture, NDVI, and Clre in low-lying areas, and channel sinuosity was significantly associated with willow influence. Our methods can be applied by restoration managers to assess where projects are threatened by renewed incision and to document levels of carbon sequestration significant to addressing climate change.



2019 ◽  
Vol 11 (10) ◽  
pp. 1192 ◽  
Author(s):  
Nianxu Xu ◽  
Jia Tian ◽  
Qingjiu Tian ◽  
Kaijian Xu ◽  
Shaofei Tang

Shadows exist universally in sunlight-source remotely sensed images, and can interfere with the spectral morphological features of green vegetations, resulting in imprecise mathematical algorithms for vegetation monitoring and physiological diagnoses; therefore, research on shadows resulting from forest canopy internal composition is very important. Red edge is an ideal indicator for green vegetation’s photosynthesis and biomass because of its strong connection with physicochemical parameters. In this study, red edge parameters (curve slope and reflectance) and the normalized difference vegetation index (NDVI) of two species of coniferous trees in Inner Mongolia, China, were studied using an unmanned aerial vehicle’s hyperspectral visible-to-near-infrared images. Positive correlations between vegetation red edge slope and reflectance with different illuminated/shaded canopy proportions were obtained, with all R2s beyond 0.850 (p < 0.01). NDVI values performed steadily under changes of canopy shadow proportions. Therefore, we devised a new vegetation index named normalized difference canopy shadow index (NDCSI) using red edge’s reflectance and the NDVI. Positive correlations (R2 = 0.886, p < 0.01) between measured brightness values and NDCSI of validation samples indicated that NDCSI could differentiate illumination/shadow circumstances of a vegetation canopy quantitatively. Combined with the bare soil index (BSI), NDCSI was applied for linear spectral mixture analysis (LSMA) using Sentinel-2 multispectral imaging. Positive correlations (R2 = 0.827, p < 0.01) between measured brightness values and fractional illuminated vegetation cover (FIVC) demonstrate the capacity of NDCSI to accurately calculate the fractional cover of illuminated/shaded vegetation, which can be utilized to calculate and extract the illuminated vegetation canopy from satellite images.



Sign in / Sign up

Export Citation Format

Share Document