scholarly journals The Role of Micro Breaking of Small-Scale Wind Waves in Radar Backscattering from Sea Surface

2020 ◽  
Vol 12 (24) ◽  
pp. 4159
Author(s):  
Irina A. Sergievskaya ◽  
Stanislav A. Ermakov ◽  
Aleksey V. Ermoshkin ◽  
Ivan A. Kapustin ◽  
Olga V. Shomina ◽  
...  

The study of the microwave scattering mechanisms of the sea surface is extremely important for the development of radar sensing methods. Some time ago, Bragg (resonance) scattering of electromagnetic waves from the sea surface was proposed as the main mechanism of radar backscattering at moderate incidence angles of microwaves. However, it has been recently confirmed that Bragg scattering is often unable to correctly explain observational data and that some other physical mechanisms should be taken into consideration. The newly introduced additional scattering mechanism was characterized as non-polarized, or non-Bragg scattering, from quasi-specular facets appearing due to breaking wave crests, the latter usually occurring in moderate and strong winds. In this paper, it was determined experimentally that such non-polarized radar backscattering appeared not only for rough sea conditions in which wave crests strongly break and “white caps” occur, but also at very low wind velocities close to their threshold values for the wave generation process. The experiments were performed using two polarized Doppler radars. The experiments demonstrated that a polarization ratio, which characterizes relative contributions of non-polarized and Bragg components to the total backscatter, changed slightly with wind velocity and wind direction. Detailed analysis of radar Doppler shifts revealed two types of scatterers responsible for the non-polarized component. One type of scatterer, moving with the velocities of decimeter-scale wind waves, determined radar backscattering at low winds. We identified these scatterers as “microbreakers” and related them to nonlinear features in the profile of decimeter-scale waves, like bulges, toes and parasitic capillary ripples. The scatterers of the second type were associated with strong breaking, moved with the phase velocities of meter-scale breaking waves and appeared at moderate winds additionally to the “microbreakers”. Along with strong breakers, the impact of microbreaking in non-polarized backscattering at moderate winds remained significant; specifically the microbreakers were found to be responsible for about half of the non-polarized component of the radar return. The presence of surfactant films on the sea surface led to a significant suppression of the small-scale non-Bragg scattering and practically did not change the non-Bragg scatterer speed. This effect was explained by the fact that the nonlinear structures associated with dm-scale waves were strongly reduced in the presence of a film due to the cascade mechanism, even if the reduction of the amplitude of dm waves was weak. At the same time, the velocities of non-Bragg scatterers remained practically the same as in non-slick areas since the phase velocity of dm waves was not affected by the film.

2021 ◽  
Vol 13 (10) ◽  
pp. 1929
Author(s):  
Yury Yu. Yurovsky ◽  
Vladimir N. Kudryavtsev ◽  
Semyon A. Grodsky ◽  
Bertrand Chapron

The effective normalized radar cross section (NRCS) of breaking waves, σwb, is empirically derived based on joint synchronized Ka-band radar and video records of the sea surface from a research tower. The σwb is a key parameter that, along with the breaker footprint fraction, Q, defines the contribution of non-polarized backscattering, NP =σwbQ, to the total sea surface NRCS. Combined with the right representation of the regular Bragg and specular backscattering components, the NP component is fundamental to model and interpret sea surface radar measurements. As the first step, the difference between NRCS values for breaking and non-breaking conditions is scaled with the optically-observed Q and compared with the geometric optics model of breaker backscattering. Optically-derived Q might not be optimal to represent the effect of breaking waves on the radar measurements. Alternatively, we rely on the breaking crest length that is firmly detected by the video technique and the empirically estimated breaker decay (inverse wavelength) scale in the direction of breaking wave propagation. A simplified model of breaker NRCS is then proposed using the geometric optics approach. This semi-analytical model parameterizes the along-wave breaker decay from reported breaker roughness spectra, obtained in laboratory experiments with mechanically-generated breakers. These proposed empirical breaker NRCS estimates agree satisfactorily with observations.


The aim of this paper is to elucidate the microwave reflectivity properties of small-scale breaking water waves, which are a widespread feature of the wind-driven air-sea interface. By using a laboratory wave flume in which a small-scale breaking wave was held stationary against an opposing current, a detailed investigation of the microwave reflectivity at X-band revealed significantly enhanced levels of local backscattered power from the crest regions of small-scale breaking waves. A surprising level of organization is discovered in the hydrodynamic disturbances generated in such breaking zones. Their wavenumber-frequency spectral properties are reported in detail, from which it is concluded that the microwave reflectivity is consistent with Bragg scattering from these disturbances. The application of these findings to active microwave remote sensing of the oceans is discussed.


2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


2020 ◽  
Vol 12 (21) ◽  
pp. 3618
Author(s):  
Stanislav Ermakov ◽  
Vladimir Dobrokhotov ◽  
Irina Sergievskaya ◽  
Ivan Kapustin

The role of wave breaking in microwave backscattering from the sea surface is a problem of great importance for the development of theories and methods on ocean remote sensing, in particular for oil spill remote sensing. Recently it has been shown that microwave radar return is determined by both Bragg and non-Bragg (non-polarized) scattering mechanisms and some evidence has been given that the latter is associated with wave breaking, in particular, with strong breaking such as spilling or plunging. However, our understanding of mechanisms of the action of strong wave breaking on small-scale wind waves (ripples) and thus on the radar return is still insufficient. In this paper an effect of suppression of radar backscattering after strong wave breaking has been revealed experimentally and has been attributed to the wind ripple suppression due to turbulence generated by strong wave breaking. The experiments were carried out in a wind wave tank where a frequency modulated wave train of intense meter-decimeter-scale surface waves was generated by a mechanical wave maker. The wave train was compressed according to the gravity wave dispersion relation (“dispersive focusing”) into a short-wave packet at a given distance from the wave maker. Strong wave breaking with wave crest overturning (spilling) occurred for one or two highest waves in the packet. Short decimeter-centimeter-scale wind waves were generated at gentle winds, simultaneously with the long breaking waves. A Ka-band scatterometer was used to study microwave backscattering from the surface waves in the tank. The scatterometer looking at the area of wave breaking was mounted over the tank at a height of about 1 m above the mean water level, the incidence angle of the microwave radiation was about 50 degrees. It has been obtained that the radar return in the presence of short wind waves is characterized by the radar Doppler spectrum with a peak roughly centered in the vicinity of Bragg wave frequencies. The radar return was strongly enhanced in a wide frequency range of the radar Doppler spectrum when a packet of long breaking waves arrived at the area irradiated by the radar. After the passage of breaking waves, the radar return strongly dropped and then slowly recovered to the initial level. Measurements of velocities in the upper water layer have confirmed that the attenuation of radar backscattering after wave breaking is due to suppression of short wind waves by turbulence generated in the breaking zone. A physical analysis of the effect has been presented.


2007 ◽  
Vol 37 (7) ◽  
pp. 1811-1828 ◽  
Author(s):  
Tobias Kukulka ◽  
Tetsu Hara ◽  
Stephen E. Belcher

Abstract Under high-wind conditions, breaking surface waves likely play an important role in the air–sea momentum flux. A coupled wind–wave model is developed based on the assumption that in the equilibrium range of surface wave spectra the wind stress is dominated by the form drag of breaking waves. By conserving both momentum and energy in the air and also imposing the wave energy balance, coupled equations are derived governing the turbulent stress, wind speed, and the breaking-wave distribution (total breaking crest length per unit surface area as a function of wavenumber). It is assumed that smaller-scale breaking waves are sheltered from wind forcing if they are in airflow separation regions of longer breaking waves (spatial sheltering effect). Without this spatial sheltering, exact analytic solutions are obtained; with spatial sheltering asymptotic solutions for small- and large-scale breakers are derived. In both cases, the breaking-wave distribution approaches a constant value for large wavenumbers (small-scale breakers). For low wavenumbers, the breaking-wave distribution strongly depends on wind forcing. If the equilibrium range model is extended to the spectral peak, the model yields the normalized roughness length (Charnock coefficient) of growing seas, which increases with wave age and is roughly consistent with earlier laboratory observations. However, the model does not yield physical solutions beyond a critical wave age, implying that the wind input to the wave field cannot be dominated by breaking waves at all wavenumbers for developed seas (including field conditions).


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ye Zhao ◽  
Wen-Tao Guan ◽  
Peng-Ju Yang

In order to analyze the scattering characteristics of sea surface under high sea state, a complete scattering model of sea surface considering breaking wave is established in this study based on the refined facet scattering field model (RFSFM) and the scattering theory of breaking wave. On the basis of this model, the influence of breaking waves on the mono/bistatic SAR imaging of sea surface at HH and VV polarization is studied. The results show that with the increase in wind speed, the coverage of breaking wave increases obviously and the consideration of breaking wave has a good correction for the scattering coefficient at HH polarization under grazing incidence; however, for VV polarization, the effect of breaking wave is very small.


2012 ◽  
Vol 1 (33) ◽  
pp. 74 ◽  
Author(s):  
Dimitris Stagonas ◽  
Gerald Muller ◽  
Karunya Ramachandran ◽  
Stefan Schimmels ◽  
Alec Dane

Although existing knowledge on the vertical distribution of impact pressures on sea-dikes is well established only very little is known with respect to their horizontal distribution. A collaboration developed between the University of Southampton, Uk and FZK, Hannover looks in more detail at the distribution of pressures induced by waves breaking on the face of a sea-dike. For this, 2D large scale experiments with waves breaking on a 1:3 sea dike were conducted but instead of pressure transducers a tactile pressure sensor was used to map the impact pressures. Such sensors were initially used with breaking waves in the University of Southampton and their use for large scale experiments was attempted here for the first time. In the current paper the calibration and application of the tactile sensor for experiments involving up to 1m high and 8sec long waves are initially described. Preliminary results illustrating the simultaneous distribution of impact induced pressures over an area of 426.7x487.7mm are then presented. Based on these pressure maps the vertical and horizontal location of maximum breaking wave induced pressures is also deduced.


Author(s):  
Giuseppina Palma ◽  
Sara Mizar Formentin ◽  
Barbara Zanuttigh

This paper is focused on the analysis of the impact process at dikes with crown walls and parapets under breaking and non-breaking waves. A small-scale laboratory campaign was performed at the Hydraulic Laboratory of Bologna. The experiments were aimed to analyze the vertical pressure distribution along the crown wall and the resulting wave forces, by varying geometrical and hydraulic parameters. The tested configurations included different off-shore slopes, dike crest widths, crown-wall heights, dike crest freeboards and the inclusion of the parapet. The measurements were combined with the image analysis of the run-up and of the wave impact process. A sub-set of the experiments was numerically reproduced, with the openFOAM modelling suite, to support and to extend the experimental results. The results confirmed the link between the air content, the shape and the magnitude of the pressures according to the breaker type, already observed for larger-scale experiments.


2008 ◽  
Vol 38 (6) ◽  
pp. 1296-1312 ◽  
Author(s):  
Johannes R. Gemmrich ◽  
Michael L. Banner ◽  
Chris Garrett

Abstract Video observations of the ocean surface taken from aboard the Research Platform FLIP reveal the distribution of the along-crest length and propagation velocity of breaking wave crests that generate visible whitecaps. The key quantity assessed is Λ(c)dc, the average length of breaking crests per unit area propagating with speeds in the range (c, c + dc). Independent of the wave field development, Λ(c) is found to peak at intermediate wave scales and to drop off sharply at larger and smaller scales. In developing seas breakers occur at a wide range of scales corresponding to phase speeds from about 0.1 cp to cp, where cp is the phase speed of the waves at the spectral peak. However, in developed seas, breaking is hardly observed at scales corresponding to phase speeds greater than 0.5 cp. The phase speed of the most frequent breakers shifts from 0.4 cp to 0.2 cp as the wave field develops. The occurrence of breakers at a particular scale as well as the rate of surface turnover are well correlated with the wave saturation. The fourth and fifth moments of Λ(c) are used to estimate breaking-wave-supported momentum fluxes, energy dissipation rate, and the fraction of momentum flux supported by air-entraining breaking waves. No indication of a Kolmogorov-type wave energy cascade was found; that is, there is no evidence that the wave energy dissipation is dominated by small-scale waves. The proportionality factor b linking breaking crest distributions to the energy dissipation rate is found to be (7 ± 3) × 10−5, much smaller than previous estimates.


Author(s):  
Gu¨nther F. Clauss ◽  
Sverre K. Haver ◽  
Mareike Strach

To predict the characteristic impact pressure due to breaking waves on platform columns corresponding to an annual exceedence probability of 10−4 model test data with the Sleipner A gravity based structure (GBS) are subjected to a stochastic analysis. The analysis is based on the environmental contour line approach. In addition, the procedure recommended by Det Norske Veritas (DNV) for calculating shock pressures due to breaking waves is used for comparison. Time histories of pressure and wave elevation for the most severe measured impacts show that the measured pressures are induced by breaking waves. However, a difference between the resulting characteristic impact pressures based on the two approaches can be observed: The stochastic analysis results in much higher pressures than the approach recommended by DNV. These findings are supported by the analysis of data that were collected during model tests with the Gjo̸a semi-submersible and the Snorre A tension leg platform (TLP), where the difference between the results was rather large as well. For the semi-submersible and the TLP, one reason for the difference is bias in the fitment of the stochastic model. Furthermore, dynamic amplification effects in the force sensors have to be considered. However, this bias is less significant for the GBS and dynamic amplification effects are not present since different force sensors were used. For all three model tests, an important source for the different impact pressures is the size of the force sensor area, which varies between 2.25m2 and 10.89m2. Large areas may smoothen the pressure whereas small areas are overrating the impact. Further model testing is required to clarify this effect. If the difference is still present, the recommendation of DNV has to be altered to ensure a reliable prediction of the characteristic impact loads.


Sign in / Sign up

Export Citation Format

Share Document