scholarly journals Improved Estimation of Aboveground Biomass of Disturbed Grassland through Including Bare Ground and Grazing Intensity

2021 ◽  
Vol 13 (11) ◽  
pp. 2105
Author(s):  
Yan Shi ◽  
Jay Gao ◽  
Xilai Li ◽  
Jiexia Li ◽  
Daniel Marc G. dela Torre ◽  
...  

Accurate approaches to aboveground biomass (AGB) estimation are required to support appraisal of the effectiveness of land use measures, which seek to protect grazing-adapted grasslands atop the Qinghai-Tibet Plateau (QTP). This methodological study assesses the effectiveness of one commonly used visible band vegetation index, Red Green Blue Vegetation Index (RGBVI), obtained from unmanned aerial vehicle (UAV), in estimating AGB timely and accurately at the local scale, seeking to improve the estimation accuracy by taking into account in situ collected information on disturbed grassland. Particular emphasis is placed upon the mapping and quantification of areas disturbed by grazing (simulated via mowing) and plateau pika (Ochotona curzoniae) that have led to the emergence of bare ground. The initial model involving only RGBVI performed poorly in AGB estimation by underestimating high AGB by around 10% and overestimating low AGB by about 10%. The estimation model was modified by the mowing intensity ratio and bare ground metrics. The former almost doubled the estimation accuracy from R2 = 0.44 to 0.81. However, this modification caused the bare ground AGB to be overestimated by about 38 and 19 g m−2 for 2018 and 2019, respectively. Although further modification of the model by bare ground metrics improved the accuracy slightly to 0.88, it markedly reduced the overestimation of low AGB values. It is recommended that grazing intensity be incorporated into the micro-scale estimation of AGB, together with the bare ground modification metrics, especially for severely disturbed meadows with a sizable portion of bare ground.

2019 ◽  
Vol 11 (5) ◽  
pp. 540 ◽  
Author(s):  
Cheryl Doughty ◽  
Kyle Cavanaugh

Salt marsh productivity is an important control of resiliency to sea level rise. However, our understanding of how marsh biomass and productivity vary across fine spatial and temporal scales is limited. Remote sensing provides a means for characterizing spatial and temporal variability in marsh aboveground biomass, but most satellite and airborne sensors have limited spatial and/or temporal resolution. Imagery from unmanned aerial vehicles (UAVs) can be used to address this data gap. We combined seasonal field surveys and multispectral UAV imagery collected using a DJI Matrice 100 and Micasense Rededge sensor from the Carpinteria Salt Marsh Reserve in California, USA to develop a method for high-resolution mapping of aboveground saltmarsh biomass. UAV imagery was used to test a suite of vegetation indices in their ability to predict aboveground biomass (AGB). The normalized difference vegetation index (NDVI) provided the strongest correlation to aboveground biomass for each season and when seasonal data were pooled, though seasonal models (e.g., spring, r2 = 0.67; RMSE = 344 g m−2) were more robust than the annual model (r2 = 0.36; RMSE = 496 g m−2). The NDVI aboveground biomass estimation model (AGB = 2428.2 × NDVI + 120.1) was then used to create maps of biomass for each season. Total site-wide aboveground biomass ranged from 147 Mg to 205 Mg and was highest in the spring, with an average of 1222.9 g m−2. Analysis of spatial patterns in AGB demonstrated that AGB was highest in intermediate elevations that ranged from 1.6–1.8 m NAVD88. This UAV-based approach can be used aid the investigation of biomass dynamics in wetlands across a range of spatial scales.


2011 ◽  
Vol 04 (03) ◽  
pp. 275-287 ◽  
Author(s):  
HANWU LIU ◽  
LI ZHOU ◽  
WEI LIU ◽  
HUAKUN ZHOU

The plateau pika is a keystone species of Qinghai–Tibet plateau, but its overabundance aggravates the degradation of alpine meadow. Grazing is the most convenient manner to utilize alpine meadow. Grazing would change vegetation condition, that is, change the habitat of plateau pika and so lead to variation of plateau pika population. Based on ecological characteristics of plateau pika and alpine meadow, a cellular-automata model is established to investigate the influence of grazing on dynamics of plateau pika population. Vegetation shortens with the increase of grazing intensity. When grazing intensity is light, the height of vegetation under summer grazing, continuous grazing, rotational grazing and winter grazing decrease in turn. The ACC (average carrying capacity of plateau pika) is higher on degraded meadow and is lower on undegraded meadow. On undegraded meadow grazing affects the value of ACC, whereas, on degraded meadow grazing has slight effect on it. On undegraded meadow, plateau pika occupies all cells speedly, the amount of damaged cells and the average amount of live holes in occupied cells decrease or hold the line on temporal dimension. On degraded meadow, the dispersal of plateau pika is restrained, the amount of damaged cells and the average amount of live holes in occupied cells increase on temporal dimension.


2020 ◽  
Vol 12 (19) ◽  
pp. 3228 ◽  
Author(s):  
Zhengchao Qiu ◽  
Haitao Xiang ◽  
Fei Ma ◽  
Changwen Du

The accurate estimation of the key growth indicators of rice is conducive to rice production, and the rapid monitoring of these indicators can be achieved through remote sensing using the commercial RGB cameras of unmanned aerial vehicles (UAVs). However, the method of using UAV RGB images lacks an optimized model to achieve accurate qualifications of rice growth indicators. In this study, we established a correlation between the multi-stage vegetation indices (VIs) extracted from UAV imagery and the leaf dry biomass, leaf area index, and leaf total nitrogen for each growth stage of rice. Then, we used the optimal VI (OVI) method and object-oriented segmentation (OS) method to remove the noncanopy area of the image to improve the estimation accuracy. We selected the OVI and the models with the best correlation for each growth stage to establish a simple estimation model database. The results showed that the OVI and OS methods to remove the noncanopy area can improve the correlation between the key growth indicators and VI of rice. At the tillering stage and early jointing stage, the correlations between leaf dry biomass (LDB) and the Green Leaf Index (GLI) and Red Green Ratio Index (RGRI) were 0.829 and 0.881, respectively; at the early jointing stage and late jointing stage, the coefficient of determination (R2) between the Leaf Area Index (LAI) and Modified Green Red Vegetation Index (MGRVI) was 0.803 and 0.875, respectively; at the early stage and the filling stage, the correlations between the leaf total nitrogen (LTN) and UAV vegetation index and the Excess Red Vegetation Index (ExR) were 0.861 and 0.931, respectively. By using the simple estimation model database established using the UAV-based VI and the measured indicators at different growth stages, the rice growth indicators can be estimated for each stage. The proposed estimation model database for monitoring rice at the different growth stages is helpful for improving the estimation accuracy of the key rice growth indicators and accurately managing rice production.


2021 ◽  
Vol 13 (11) ◽  
pp. 2126
Author(s):  
Yuliang Wang ◽  
Mingshi Li

Vegetation measures are crucial for assessing changes in the ecological environment. Fractional vegetation cover (FVC) provides information on the growth status, distribution characteristics, and structural changes of vegetation. An in-depth understanding of the dynamic changes in urban FVC contributes to the sustainable development of ecological civilization in the urbanization process. However, dynamic change detection of urban FVC using multi-temporal remote sensing images is a complex process and challenge. This paper proposed an improved FVC estimation model by fusing the optimized dynamic range vegetation index (ODRVI) model. The ODRVI model improved sensitivity to the water content, roughness degree, and soil type by minimizing the influence of bare soil in areas of sparse vegetation cover. The ODRVI model enhanced the stability of FVC estimation in the near-infrared (NIR) band in areas of dense and sparse vegetation cover through introducing the vegetation canopy vertical porosity (VCVP) model. The verification results confirmed that the proposed model had better performance than typical vegetation index (VI) models for multi-temporal Landsat images. The coefficient of determination (R2) between the ODRVI model and the FVC was 0.9572, which was 7.4% higher than the average R2 of other typical VI models. Moreover, the annual urban FVC dynamics were mapped using the proposed improved FVC estimation model in Hefei, China (1999–2018). The total area of all grades FVC decreased by 33.08% during the past 20 years in Hefei, China. The areas of the extremely low, low, and medium grades FVC exhibited apparent inter-annual fluctuations. The maximum standard deviation of the area change of the medium grade FVC was 13.35%. For other grades of FVC, the order of standard deviation of the change ratio was extremely low FVC > low FVC > medium-high FVC > high FVC. The dynamic mapping of FVC revealed the influence intensity and direction of the urban sprawl on vegetation coverage, which contributes to the strategic development of sustainable urban management plans.


2021 ◽  
Vol 13 (14) ◽  
pp. 2755
Author(s):  
Peng Fang ◽  
Nana Yan ◽  
Panpan Wei ◽  
Yifan Zhao ◽  
Xiwang Zhang

The net primary productivity (NPP) and aboveground biomass mapping of crops based on remote sensing technology are not only conducive to understanding the growth and development of crops but can also be used to monitor timely agricultural information, thereby providing effective decision making for agricultural production management. To solve the saturation problem of the NDVI in the aboveground biomass mapping of crops, the original CASA model was improved using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation, and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI, FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the inversion differences of FPAR with different vegetation indices. The results demonstrated that the inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred-edge) and red-edge simple ratio vegetation index (SRred-edge) were higher than those of the original CASA model. Compared with the reference data, the accuracy of aboveground biomass estimated by the improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices showed that the inversion accuracies of the red-edge vegetation indices NDVIred-edge and SRred-edge were higher than those of the other vegetation indices, which confirmed that the vegetation indices involving red-edge information can more effectively retrieve FPAR and aboveground biomass of crops.


2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Daniel O. Wasonga ◽  
Afrane Yaw ◽  
Jouko Kleemola ◽  
Laura Alakukku ◽  
Pirjo S.A. Mäkelä

Cassava has high energy value and rich nutritional content, yet its productivity in the tropics is seriously constrained by abiotic stresses such as water deficit and low potassium (K) nutrition. Systems that allow evaluation of genotypes in the field and greenhouse for nondestructive estimation of plant performance would be useful means for monitoring the health of plants for crop-management decisions. We investigated whether the red–green–blue (RGB) and multispectral images could be used to detect the previsual effects of water deficit and low K in cassava, and whether the crop quality changes due to low moisture and low K could be observed from the images. Pot experiments were conducted with cassava cuttings. The experimental design was a split-plot arranged in a completely randomized design. Treatments were three irrigation doses split into various K rates. Plant images were captured beginning 30 days after planting (DAP) and ended at 90 DAP when plants were harvested. Results show that biomass, chlorophyll, and net photosynthesis were estimated with the highest accuracy (R2 = 0.90), followed by leaf area (R2 = 0.76). Starch, energy, carotenoid, and cyanide were also estimated satisfactorily (R2 > 0.80), although cyanide showed negative regression coefficients. All mineral elements showed lower estimation accuracy (R2 = 0.14–0.48) and exhibited weak associations with the spectral indices. Use of the normalized difference vegetation index (NDVI), green area (GA), and simple ratio (SR) indices allowed better estimation of growth and key nutritional traits. Irrigation dose 30% of pot capacity enriched with 0.01 mM K reduced most index values but increased the crop senescence index (CSI). Increasing K to 16 mM over the irrigation doses resulted in high index values, but low CSI. The findings indicate that RGB and multispectral imaging can provide indirect measurements of growth and key nutritional traits in cassava. Hence, they can be used as a tool in various breeding programs to facilitate cultivar evaluation and support management decisions to avert stress, such as the decision to irrigate or apply fertilizers.


2021 ◽  
Vol 13 (4) ◽  
pp. 581 ◽  
Author(s):  
Yuanyuan Fu ◽  
Guijun Yang ◽  
Xiaoyu Song ◽  
Zhenhong Li ◽  
Xingang Xu ◽  
...  

Rapid and accurate crop aboveground biomass estimation is beneficial for high-throughput phenotyping and site-specific field management. This study explored the utility of high-definition digital images acquired by a low-flying unmanned aerial vehicle (UAV) and ground-based hyperspectral data for improved estimates of winter wheat biomass. To extract fine textures for characterizing the variations in winter wheat canopy structure during growing seasons, we proposed a multiscale texture extraction method (Multiscale_Gabor_GLCM) that took advantages of multiscale Gabor transformation and gray-level co-occurrency matrix (GLCM) analysis. Narrowband normalized difference vegetation indices (NDVIs) involving all possible two-band combinations and continuum removal of red-edge spectra (SpeCR) were also extracted for biomass estimation. Subsequently, non-parametric linear (i.e., partial least squares regression, PLSR) and nonlinear regression (i.e., least squares support vector machine, LSSVM) analyses were conducted using the extracted spectral features, multiscale textural features and combinations thereof. The visualization technique of LSSVM was utilized to select the multiscale textures that contributed most to the biomass estimation for the first time. Compared with the best-performing NDVI (1193, 1222 nm), the SpeCR yielded higher coefficient of determination (R2), lower root mean square error (RMSE), and lower mean absolute error (MAE) for winter wheat biomass estimation and significantly alleviated the saturation problem after biomass exceeded 800 g/m2. The predictive performance of the PLSR and LSSVM regression models based on SpeCR decreased with increasing bandwidths, especially at bandwidths larger than 11 nm. Both the PLSR and LSSVM regression models based on the multiscale textures produced higher accuracies than those based on the single-scale GLCM-based textures. According to the evaluation of variable importance, the texture metrics “Mean” from different scales were determined as the most influential to winter wheat biomass. Using just 10 multiscale textures largely improved predictive performance over using all textures and achieved an accuracy comparable with using SpeCR. The LSSVM regression model based on the combination of the selected multiscale textures, and SpeCR with a bandwidth of 9 nm produced the highest estimation accuracy with R2val = 0.87, RMSEval = 119.76 g/m2, and MAEval = 91.61 g/m2. However, the combination did not significantly improve the estimation accuracy, compared to the use of SpeCR or multiscale textures only. The accuracy of the biomass predicted by the LSSVM regression models was higher than the results of the PLSR models, which demonstrated LSSVM was a potential candidate to characterize winter wheat biomass during multiple growth stages. The study suggests that multiscale textures derived from high-definition UAV-based digital images are competitive with hyperspectral features in predicting winter wheat biomass.


2018 ◽  
Vol 10 (11) ◽  
pp. 1691 ◽  
Author(s):  
Xuebo Yang ◽  
Cheng Wang ◽  
Sheng Nie ◽  
Xiaohuan Xi ◽  
Zhenyue Hu ◽  
...  

The terrain slope is one of the most important surface characteristics for quantifying the Earth surface processes. Space-borne LiDAR sensors have produced high-accuracy and large-area terrain measurement within the footprint. However, rigorous procedures are required to accurately estimate the terrain slope especially within the large footprint since the estimated slope is likely affected by footprint size, shape, orientation, and terrain aspect. Therefore, based on multiple available datasets, we explored the performance of a proposed terrain slope estimation model over several study sites and various footprint shapes. The terrain slopes were derived from the ICESAT/GLAS waveform data by the proposed method and five other methods in this study. Compared with five other methods, the proposed method considered the influence of footprint shape, orientation, and terrain aspect on the terrain slope estimation. Validation against the airborne LiDAR measurements showed that the proposed method performed better than five other methods (R2 = 0.829, increased by ~0.07, RMSE = 3.596°, reduced by ~0.6°, n = 858). In addition, more statistics indicated that the proposed method significantly improved the terrain slope estimation accuracy in high-relief region (RMSE = 5.180°, reduced by ~1.8°, n = 218) or in the footprint with a great eccentricity (RMSE = 3.421°, reduced by ~1.1°, n = 313). Therefore, from these experiments, we concluded that this terrain slope estimation approach was beneficial for different terrains and various footprint shapes in practice and the improvement of estimated accuracy was distinctly related with the terrain slope and footprint eccentricity.


2016 ◽  
Vol 3 (2) ◽  
pp. 107 ◽  
Author(s):  
Muhammad Kamal ◽  
Hartono Hartono ◽  
Pramaditya Wicaksono ◽  
Novi Susetyo Adi ◽  
Sanjiwana Arjasakusuma

The Karimunjawa Islands mangrove forest has been subjected to various direct and indirect human disturbances in the recent years. If not properly managed, this disturbance will lead to the degradation of mangrove habitat health. Assessing forest canopy fractional cover (fc) using remote sensing data is one way of measuring mangrove forest degradation. This study aims to (1) estimate the forest canopy fc using a semi-empirical method, (2) assess the accuracy of the fc estimation and (3) create mangrove forest degradation from the canopy fc results. A sample set of in-situ fc was collected using the hemispherical camera for model development and accuracy assessment purposes. We developed semi-empirical relationship models between pixel values of ALOS AVNIR-2 image (10m pixel size) and field fc, using Enhanced Vegetation Index (EVI) as a proxy of the image spectral response. The results show that the EVI provides reasonable estimation accuracy of mangrove canopy fc in Karimunjawa Island with the values ranged from 0.17 to 0.96 (n = 69). The low fc values correspond to vegetation opening and gaps caused by human activities or mangrove dieback. The high fc values correspond to the healthy and dense mangrove stands, especially the Rhizophora sp formation at the seafront. The results of this research justify the use of simple canopy fractional cover model for assessing the mangrove forest degradation status in the study area. Further research is needed to test the applicability of this approach at different sites.


Sign in / Sign up

Export Citation Format

Share Document