scholarly journals Enhanced Oceanic Environmental Responses and Feedbacks to Super Typhoon Nida (2009) during the Sudden-Turning Stage

2021 ◽  
Vol 13 (14) ◽  
pp. 2648
Author(s):  
Jiagen Li ◽  
Yuanjian Yang ◽  
Guihua Wang ◽  
Hao Cheng ◽  
Liang Sun

The ocean surface and subsurface biophysical responses and their feedbacks to super typhoon Nida were comprehensively investigated based on a substantial dataset of multiple-satellite observations, Argo profiles, and reanalysis data. Nida experienced two Category 5 stages: a rapid intensification stage that was fast moving along a straight-line track, and a rapid weakening stage that was slowly moving along a sharp-left sudden-turning track. During the straight-line stage, Nida caused an average sea surface temperature (SST) cooling of 1.44 °C and a chlorophyll-a (chl-a) concentration increase of 0.03 mg m−3. During the sudden-turning stage, cyclonic sudden-turning induced a strong cold cyclonic eddy (SSHA < −60 cm) by strong upwelling, which caused the maximum SST cooling of 6.68 °C and a long-lasting chl-a bloom of 0.6 mg m−3 on the left-hand side of the track, resulting in substantial impacts on the ocean ecological environment. Furthermore, the enhanced ocean cold wake and the longer air–sea interaction in turn decreased the average inner-core SST of 4 °C and the corresponding enthalpy flux of 780 W m−2, which induced a notable negative feedback to the typhoon intensity by weakening it from Category 5 to Category 2. The left bias response and notable negative feedback are special due to sharp-left sudden-turning of typhoon. Comparing with the previously found slow translation speed (~4 m s−1) of significant ocean response, the negative feedback requires even more restriction of translation speed (<2 m s−1) and sharp sudden-turning could effectively relax restrictions by making equivalent translation speed lower and air-sea interaction time longer. Our findings point out that there are some unique features in ocean–typhoon interactions under sudden-turning and/or lingering tracks comparing with ordinary tracks.

2021 ◽  
Vol 13 (19) ◽  
pp. 3805
Author(s):  
Jiagen Li ◽  
Han Zhang ◽  
Shanshan Liu ◽  
Xiuting Wang ◽  
Liang Sun

Four sequential tropical cyclones generated and developed in the Northwest Pacific Ocean (NWP) in 2014, which had significant impacts on the oceanic environment and coastal regions. Based on a substantial dataset of multiple-satellite observations, Argo profiles, and reanalysis data, we comprehensively investigated the interactions between the oceanic environment and sequential tropical cyclones. Super typhoon Neoguri (2014) was the first typhoon-passing studied area, with the maximum sustained wind speed of 140 kts, causing strong cold wake along the track. The location of the strongest cold wake was consistent with the pre-existing cyclonic eddy (CE), in which the average sea surface temperature (SST) cooling exceeded −5 °C. Subsequently, three tropical cyclones passed the ocean environment left by Neoguri, namely, the category 2 typhoon Matmo (2014), the tropical cyclone Nakri (2014) and the category 5 typhoon Halong (2014), which caused completely different subsequent responses. In the CE, due to the fact that the ocean stratification was strongly destroyed by Neoguri and difficult to recover, even the weak Nakri could cause a secondary response, but the secondary SST cooling would be overridden by the first response and thus could cause no more serious ocean disasters. If the subsequent typhoon was super typhoon Halong, it could cause an extreme secondary SST cooling, exceeding −8 °C, due to the deep upwelling, exceeding 700 m, surpassing the record of the maximum cooling caused by the first typhoon. In the anti-cyclonic eddy (AE), since the first typhoon Neoguri caused strong seawater mixing, it was difficult for the subsequent weak typhoons to mix the deeper, colder and saltier water into the surface, thus inhibiting secondary SST cooling, and even the super typhoon Halong would only cause as much SST cooling as the first typhoon. Therefore, the ocean responses to sequential typhoons depended on not only TCs intensity, but also TCs track order and ocean mesoscale eddies. In turn, the cold wake caused by the first typhoon, Neoguri, induced different feedback effects on different subsequent typhoons.


2021 ◽  
Vol 13 (3) ◽  
pp. 420
Author(s):  
Jingru Sun ◽  
Gabriel Vecchi ◽  
Brian Soden

Multi-year records of satellite remote sensing of sea surface salinity (SSS) provide an opportunity to investigate the climatological characteristics of the SSS response to tropical cyclones (TCs). In this study, the influence of TC winds, rainfall and preexisting ocean stratification on SSS evolution is examined with multiple satellite-based and in-situ data. Global storm-centered composites indicate that TCs act to initially freshen the ocean surface (due to precipitation), and subsequently salinify the surface, largely through vertical ocean processes (mixing and upwelling), although regional hydrography can lead to local departure from this behavior. On average, on the day a TC passes, a strong SSS decrease is observed. The fresh anomaly is subsequently replaced by a net surface salinification, which persists for weeks. This salinification is larger on the right (left)-hand side of the storm motion in the Northern (Southern) Hemisphere, consistent with the location of stronger turbulent mixing. The influence of TC intensity and translation speed on the ocean response is also examined. Despite having greater precipitation, stronger TCs tend to produce longer-lasting, stronger and deeper salinification especially on the right-hand side of the storm motion. Faster moving TCs are found to have slightly weaker freshening with larger area coverage during the passage, but comparable salinification after the passage. The ocean haline response in four basins with different climatological salinity stratification reveals a significant impact of vertical stratification on the salinity response during and after the passage of TCs.


2013 ◽  
Vol 43 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Jiayi Pan ◽  
Yujuan Sun

Abstract The ocean responses to Typhoon Cimaron, which influenced the South China Sea (SCS) from 1 to 8 November 2006, are analyzed. Based on satellite-observed sea surface temperature (SST) and climatological temperature profiles in the SCS, mixed layer deepening, an important parameter characterizing turbulent mixing and upwelling driven by strong typhoon winds, is derived. Corresponding to the SST drop of 4.4°C on 3 November 2006, the mixed layer deepened by 104.5 m relative to the undisturbed depth of 43.2 m, which is consistent with a simulation result from a mixed layer model. Furthermore, baroclinic geostrophic velocity and vorticity are calculated from the surface temperature gradient caused by the typhoon. The negative vorticity, associated with the typhoon cooling, indicated an anticyclonic baroclinic circulation strongest at the base of the mixed layer and at the depth of 50 m, the geostrophic speed reached as high as 0.2 m s−1. Typhoon Cimaron proceeded slowly (1.7 m s−1) when it was making a southwestward turn on 3 November 2006, resulting in a subcritical condition with a Froude number (the ratio of typhoon translation speed to first baroclinic mode speed) of 0.6 around the maximum SST drop location and facilitating high SST cooling and mixed layer deepening because of the absence of inertial-gravity waves in the wake of the typhoon. Comparison of Argo buoy data with the climatological temperature suggests that the average uncertainty in the mixed layer deepening estimation caused by the difference between Argo and climatological temperature profiles is less than 10 m.


2013 ◽  
Vol 28 (2) ◽  
pp. 297-315 ◽  
Author(s):  
Steven M. Lazarus ◽  
Samuel T. Wilson ◽  
Michael E. Splitt ◽  
Gary A. Zarillo

Abstract A computationally efficient method of producing tropical cyclone (TC) wind analyses is developed and tested, using a hindcast methodology, for 12 Gulf of Mexico storms. The analyses are created by blending synthetic data, generated from a simple parametric model constructed using extended best-track data and climatology, with a first-guess field obtained from the NCEP–NCAR North American Regional Reanalysis (NARR). Tests are performed whereby parameters in the wind analysis and vortex model are varied in an attempt to best represent the TC wind fields. A comparison between nonlinear and climatological estimates of the TC size parameter indicates that the former yields a much improved correlation with the best-track radius of maximum wind rm. The analysis, augmented by a pseudoerror term that controls the degree of blending between the NARR and parametric winds, is tuned using buoy observations to calculate wind speed root-mean-square deviation (RMSD), scatter index (SI), and bias. The bias is minimized when the parametric winds are confined to the inner-core region. Analysis wind statistics are stratified within a storm-relative reference frame and by radial distance from storm center, storm intensity, radius of maximum wind, and storm translation speed. The analysis decreases the bias and RMSD in all quadrants for both moderate and strong storms and is most improved for storms with an rm of less than 20 n mi. The largest SI reductions occur for strong storms and storms with an rm of less than 20 n mi. The NARR impacts the analysis bias: when the bias in the former is relatively large, it remains so in the latter.


Author(s):  
Buo-Fu Chen ◽  
Christopher A. Davis ◽  
Ying-Hwa Kuo

AbstractIdealized numerical studies have suggested that in addition to vertical wind shear (VWS) magnitude, the VWS profile also affects tropical cyclone (TC) development. A way to further understand the VWS profile’s effect is to examine the interaction between a TC and various shear-relative low-level mean flow (LMF) orientations. This study mainly uses the ERA5 reanalysis to verify that, consistent with idealized simulations, boundary-layer processes associated with different shear-relative LMF orientations affect real-world TC’s intensity and size. Based on analyses of 720 TCs from multiple basins during 2004–2016, a TC affected by an LMF directed toward downshear-left in the Northern Hemisphere favors intensification, whereas an LMF directed toward upshear-right is favorable for expansion. Furthermore, physical processes associated with shear-relative LMF orientation may also partly explain the relationship between the VWS direction and TC development, as there is a correlation between the two variables.The analysis of reanalysis data provides other new insights. The relationship between shear-relative LMF and intensification is not significantly modified by other factors [inner-core sea surface temperature (SST), VWS magnitude, and relative humidity (RH)]. However, the relationship regarding expansion is partly attributed to environmental SST and RH variations for various LMF orientations. Moreover, SST is critical to the basin-dependent variability of the relationship between the shear-relative LMF and intensification. For Atlantic TCs, the relationship between LMF orientation and intensification is inconsistent with all-basin statistics unless the analysis is restricted to a representative subset of samples associated with generally favorable conditions.


2012 ◽  
Vol 27 (6) ◽  
pp. 1520-1537 ◽  
Author(s):  
Vivek N. Mahale ◽  
Jerald A. Brotzge ◽  
Howard B. Bluestein

Abstract On 2 April 2010, a developing quasi-linear convective system (QLCS) moved rapidly northeastward through central Oklahoma spawning at least three intense, mesoscale vortices. At least two of these vortices caused damage rated as category 0 to 1 on the enhanced Fujita scale (EF0–EF1) in and near the town of Rush Springs. Two radar networks—the National Weather Service Weather Surveillance Radar-1988 Doppler network (WSR-88D) and the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network—collected high spatial and temporal resolution data of the event. This study is an in-depth polarimetric analysis of mesovortices within a QLCS. In this case study, the storm development and evolution of the QLCS mesovortices are examined. Significant findings include the following: 1) The damage in Rush Springs was caused by a combination of the fast translation speed and the embedded circulations associated with QLCS vortices. The vortices’ relative winds nearly negated the storm motion to the left of the vortex, but doubled the ground-relative wind to the right of the vortex. 2) A significant differential reflectivity (ZDR) arc developed along the forward flank of the first vortex. The ZDR arc propagated northeastward along the QLCS with the development of each new vortex. 3) A minimum in the copolar correlation coefficient (ρhv) in the center of the strongest vortex was observed, indicating the likely existence of a polarimetric tornado debris signature (TDS). A secondary ρhv minimum also was found just to the right of the vortex center, possibly associated with lofted debris from straight-line winds.


1919 ◽  
Vol 23 (108) ◽  
pp. 617-625
Author(s):  
Horace Darwin

An instrument to indicate whether, under all conditions, the path of the aeroplane is a straight line or whether it is turning to the right or left, is much required. It is well known that when flying in a cloud or at night, and no fixed object is visible, even the most experienced pilot may, without realising it, be flying on a sharp curve. If, however, the angle of banking is great the muscular reaction of his body will have to be increased to counteract the increased force acting on it. This will tell him that his course is not straight, but there is nothing to show whether he is on a right-hand or left-hand turn. If he tries to straighten his course he is just as likely to increase the curvature as to straighten out.


2018 ◽  
Vol 146 (3) ◽  
pp. 661-677 ◽  
Author(s):  
Iam-Fei Pun ◽  
I.-I. Lin ◽  
Chun-Chi Lien ◽  
Chun-Chieh Wu

Supertyphoon Megi (2010) left behind two very contrasting SST cold-wake cooling patterns between the Philippine Sea (1.5°C) and the South China Sea (7°C). Based on various radii of radial winds, the authors found that the size of Megi doubles over the South China Sea when it curves northward. On average, the radius of maximum wind (RMW) increased from 18.8 km over the Philippine Sea to 43.1 km over the South China Sea; the radius of 64-kt (33 m s−1) typhoon-force wind (R64) increased from 52.6 to 119.7 km; the radius of 50-kt (25.7 m s−1) damaging-force wind (R50) increased from 91.8 to 210 km; and the radius of 34-kt (17.5 m s−1) gale-force wind (R34) increased from 162.3 to 358.5 km. To investigate the typhoon size effect, the authors conduct a series of numerical experiments on Megi-induced SST cooling by keeping other factors unchanged, that is, typhoon translation speed and ocean subsurface thermal structure. The results show that if it were not for Megi’s size increase over the South China Sea, the during-Megi SST cooling magnitude would have been 52% less (reduced from 4° to 1.9°C), the right bias in cooling would have been 60% (or 30 km) less, and the width of the cooling would have been 61% (or 52 km) less, suggesting that typhoon size is as important as other well-known factors on SST cooling. Aside from the size effect, the authors also conduct a straight-track experiment and find that the curvature of Megi contributes up to 30% (or 1.2°C) of cooling over the South China Sea.


2018 ◽  
Vol 146 (5) ◽  
pp. 1495-1510 ◽  
Author(s):  
Li-Huan Hsu ◽  
Shih-Hao Su ◽  
Robert G. Fovell ◽  
Hung-Chi Kuo

Typhoons with “deflection tracks” (DTs) within a 200-km distance of the mountainous island of Taiwan are examined. We analyze 84 landfalling typhoons that compose 49 DT cases turning to the left-hand side, including 18 with very large deflection angles (DA > 20°) and another 7 having looped tracks (LTs). Most of the large DA and LT cases are “northern landfall” type, reaching Taiwan’s east coast poleward of 24°N and originally possessing relatively slow translation speeds (~4 m s−1). Their average translation speeds, however, increase by 50% in the 3 h prior to landfall. The WRF Model is used to simulate DT cases, and potential vorticity (PV) tendency diagnosis is used to interpret the contributions of the horizontal advection (HA), vertical advection (VA), and diabatic heating (DH) terms. The northern landfall tropical cyclones (TCs) possess significant cross-mountain flow to the south of the storm near the coast, resulting in vorticity stretching (the VA effect) and subsidence warming. The subsidence suppresses storm convection and produces heating asymmetries (the DH effect) that can induce significant southwestward deflections. The cross-mountain VA and DH effects are weaker for the “southern landfall” storms. The results explain well the observed increase of translation speed prior to landfall in DT cases and show that the HA effect, in general, does not contribute to the track deflection. Our results highlight the impact of topography on TC track by the vorticity stretching effect and by asymmetric diabatic heating.


2021 ◽  
pp. 194173812098001
Author(s):  
T. David Luo ◽  
Aaron D. Sciascia ◽  
Austin V. Stone ◽  
Chukwuweike U. Gwam ◽  
Christopher A. Grimes ◽  
...  

Background: Repetitive throwing in baseball pitchers can lead to pathologic changes in shoulder anatomy, range of motion (notably glenohumeral internal rotation deficit), and subsequent injury; however, the ideal strengthening, recovery, and maintenance protocol of the throwing shoulder in baseball remains unclear. Two strategies for throwing shoulder recovery from pitching are straight-line long-toss (SLT) throwing and ultra-long-toss (ULT) throwing, although neither is preferentially supported by empirical data. Hypothesis: ULT will be more effective in returning baseline internal rotation as compared with SLT in collegiate pitchers after a pitching session. Study Design: Cohort study. Level of Evidence: Level 3. Methods: A total of 24 National Collegiate Athletic Association Division I baseball pitchers with mean age 20.0 ± 1.1 years were randomized to either the ULT group (n = 13; 9 right-hand dominant, 4 left-hand dominant) or SLT group (n = 11; 10 right-hand dominant, 1 left-hand dominant). Measurements (dominant and nondominant, 90° abducted external rotation [ER], internal rotation [IR], and total range of motion [TROM]) were taken at 5 time points across 3 days: before and immediately after a standardized bullpen session on day 1; before and immediately after a randomized standardized ULT or SLT session on day 2; and before practice on Day 3. Results: ULT demonstrated significantly greater final ER compared with baseline (+10°; P = 0.05), but did not demonstrate significant IR changes. Similarly, SLT demonstrated significantly greater post-SLT ER (+12°; P = 0.02) and TROM (+12°; P = 0.01) compared with baseline, but no significant IR changes. Final ER measurements were similar between ULT (135° ± 14°) and SLT (138° ± 10°) ( P = 0.59). There was also no statistically significant difference in final IR between ULT (51° ± 14°) and SLT (56° ± 8°) ( P = 0.27). Conclusion: The routine use of postperformance, ULT throwing to recover from range of motion alterations, specifically IR loss, after a pitching session is not superior to standard, SLT throwing. Based on these findings, the choice of postpitching recovery throwing could be player specific based on experience and comfort. Clinical Relevance: The most effective throwing regimens for enhancing performance and reducing residual impairment are unclear, and ideal recovery and maintenance protocols are frequently debated with little supporting data. Two strategies for throwing shoulder recovery from pitching are SLT and ULT throwing. These are employed to help maintain range of motion and limit IR loss in pitchers. The routine use of ULT throwing for recovery and to limit range of motion alterations after a pitching session is not superior to SLT throwing.


Sign in / Sign up

Export Citation Format

Share Document