scholarly journals Monitoring and Forecasting of Urban Expansion Using Machine Learning-Based Techniques and Remotely Sensed Data: A Case Study of Gharbia Governorate, Egypt

2021 ◽  
Vol 13 (22) ◽  
pp. 4498
Author(s):  
Eman Mostafa ◽  
Xuxiang Li ◽  
Mohammed Sadek ◽  
Jacqueline Fifame Dossou

Rapid population growth is the main driver of the accelerating urban sprawl into agricultural lands in Egypt. This is particularly obvious in governorates where there is no desert backyard (e.g., Gharbia) for urban expansion. This work presents an overview of machine learning-based and state-of-the-art remote sensing products and methodologies to address the issue of random urban expansion, which negatively impacts environmental sustainability. The study aims (1) to investigate the land-use/land-cover (LULC) changes over the past 27 years, and to simulate the future LULC dynamics over Gharbia; and (2) to produce an Urbanization Risk Map in order for the decision-makers to be informed of the districts with priority for sustainable planning. Time-series Landsat images were utilized to analyze the historical LULC change between 1991 and 2018, and to predict the LULC change by 2033 and 2048 based on a logistic regression–Markov chain model. The results show that there is a rapid urbanization trend corresponding to a diminution of the agricultural land. The agricultural sector represented 91.2% of the total land area in 1991, which was reduced to 83.7% in 2018. The built-up area exhibited a similar (but reversed) pattern. The results further reveal that the observed LULC dynamics will continue in a like manner in the future, confirming a remarkable urban sprawl over the agricultural land from 2018 to 2048. The cultivated land changes have a strong negative correlation with the built-up cover changes (the R2 were 0.73 in 1991–2003, and 0.99 in 2003–2018, respectively). Based on the Fuzzy TOPSIS technique, Mahalla Kubra and Tanta are the districts which were most susceptible to the undesirable environmental and socioeconomic impacts of the persistent urbanization. Such an unplanned loss of the fertile agricultural lands of the Nile Delta could negatively influence the production of premium agricultural crops for the local market and export. This study is substantial for the understanding of future trends of LULC changes, and for the proposal of alternative policies to reduce urban sprawl on fertile agricultural lands.

2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


2020 ◽  
Vol 8 (4) ◽  
pp. 73-80
Author(s):  
Assefa Ayele ◽  
Kassa Tarekegn

AbstractIn a country like Ethiopia where the vast majority of the populations are employed in agriculture, land is an important economic resource for the development of rural livelihoods. Agricultural land in peri-urban areas is, however, transformed into built-up regions through horizontal urban expansion that has an effect on land use value. In recent years Ethiopia has been experiencing rapid urbanization, which has led to an ever-increasing demand for land in peri-urban areas for housing and other nonagricultural activities that pervades agricultural land. There is a high demand for informal and illegal peri-urban land which has been held by peri-urban farmers, and this plays a vital role in the unauthorized and sub-standard house construction on agricultural land. This urbanization has not been extensively reviewed and documented. In this review an attempt has been made to assess the impacts of rapid urbanization on agricultural activities. Urban expansion has reduced the areas available for agriculture, which has seriously impacted upon peri-urban farmers that are often left with little or no land to cultivate and which has increased their vulnerability. Housing encroachments have been observed to be uncontrolled due to a weak government response to the trend of unplanned city expansion. This has left peri-urban farmers exposed to the negative shocks of urbanization because significant urbanization-related agricultural land loss has a positive correlation with grain production decrease. Appropriate governing bodies should control urban development in order to control the illegal and informal spread of urbanization on agricultural land that threatens food production.


2021 ◽  
Vol 283 ◽  
pp. 01038
Author(s):  
Jing Sun ◽  
Jing He

The rapid urbanization process has recently led to significant land use and land cover (LULC) changes, thereby affecting the climate and the environment. The purpose of this study is to analyze the LULC changes in Hefei City, Anhui Province, and their relationship with land surface temperature (LST). To achieve this goal, multitemporal Landsat data were used to monitor the LULC and LST between 2005 and 2015. The study also used correlation analysis to analyze the relationship between LST, LULC, and other spectral indices (NDVI, NDBI, and NDWI). The results show that the built-up land has expanded significantly, transforming from 488.26 km2 in 2005 to 575.64 km2 in 2015. It further shows that the mean LST in Hefei city has increased from 284.0 K in 2005 to 285.86 K in 2015. The results also indicate that there is a positive correlation between LST and NDVI and NDBI, while there is a negative correlation between LST and NDWI. This means that urban expansion and reduced water bodies will lead to an increase in LST.


Urban Science ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 10
Author(s):  
Mostapha Harb ◽  
Matthias Garschagen ◽  
Davide Cotti ◽  
Elke Krätzschmar ◽  
Hayet Baccouche ◽  
...  

Current rapid urbanization trends in developing countries present considerable challenges to local governments, potentially hindering efforts towards sustainable urban development. To effectively anticipate the challenges posed by urbanization, participatory modeling techniques can help to stimulate future-oriented decision-making by exploring alternative development scenarios. With the example of the coastal city of Monastir, we present the results of an integrated urban growth analysis that combines the SLEUTH (slope, land use, exclusion, urban extent, transportation, and hill shade) cellular automata model with qualitative inputs from relevant local stakeholders to simulate urban growth until 2030. While historical time-series of Landsat data fed a business-as-usual prediction, the quantification of narrative storylines derived from participatory scenario workshops enabled the creation of four additional urban growth scenarios. Results show that the growth of the city will occur at different rates under all scenarios. Both the “business-as-usual” (BaU) prediction and the four scenarios revealed that urban expansion is expected to further encroach on agricultural land by 2030. The various scenarios suggest that Monastir will expand between 127–149 hectares. The information provided here goes beyond simply projecting past trends, giving decision-makers the necessary support for both understanding possible future urban expansion pathways and proactively managing the future growth of the city.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 44
Author(s):  
Bernard Fosu Frimpong ◽  
Frank Molkenthin

Kumasi is a nodal city and functions as the administrative and economic capital of the Ashanti region in Ghana. Rapid urbanization has been experienced inducing the transformation of various Land Use Land Cover (LULC) types into urban/built-up areas in Kumasi. This paper aims at tracking spatio-temporal LULC changes utilizing Landsat imagery from 1986, 2013 and 2015 of Kumasi. The unique contribution of this research is its focus on urban expansion analysis and the utilization of Random Forest (RF) Classifier for satellite image classification. Change detection, urban land modelling and urban expansion in the sub-metropolitan zones, buffers, density decay curve and correlation analysis were methodologies adopted for our study. The classifier yielded better accuracy compared to earlier works in Ghana. The evaluation of LULC changes indicated that urban/built-up areas are continually increasing at the expense of agricultural and forestlands. The urban/built-up areas occupied 4622.49 hectares (ha) (23.78%), 13,447.50 ha (69.18%) and 14,004.60 ha (72.05%) in 1986, 2013 and 2015, respectively of the 19,438 ha area of Kumasi. Projection indicated that urban/built-up areas will occupy 15,490 ha (79.70%) in 2025. The urban expansion was statistically significant. The results revealed the importance of spatial modeling for environmental management and city planning.


2020 ◽  
Vol 20 (1) ◽  
pp. 9-18
Author(s):  
Rabina Twayana ◽  
Sijan Bhandari ◽  
Reshma Shrestha

Nepal is considered one of the rapidly urbanizing countries in south Asia. Most of the urbanization is dominated in large and medium cities i.e., metropolitan, sub-metropolitan, and municipalities. Remote Sensing and Geographic Information System (GIS) technologies in the sector of urban land governance are growing day by day due to their capability of mapping, analyzing, detecting changes, etc. The main aim of this paper is to analyze the urban growth pattern in Banepa Municipality during three decades (1992-2020) using freely available Landsat imageries and explore driving factors for change in the urban landscape using the AHP model. The Banepa municipality is taken as a study area as it is one of the growing urban municipalities in the context of Nepal. The supervised image classification was applied to classify the acquired satellite image data. The generated results from this study illustrate that urbanization is gradually increasing from 1992 to 2012 while, majority of the urban expansion happened during 2012-2020, and it is still growing rapidly along the major roads in a concentric pattern. This study also demonstrates the responsible driving factors for continuous urban growth during the study period. Analytical Hierarchy Process (AHP) was adopted to analyze the impact of drivers which reveals that, Internal migration (57%) is major drivers for change in urban dynamics whereas, commercialization (25%), population density (16%), and real estate business (5%) are other respective drivers for alteration of urban land inside the municipality. To prevent rapid urbanization in this municipality, the concerned authorities must take initiative for proper land use planning and its implementation on time. Recently, Nepal Government has endorsed Land Use Act 2019 for preventing the conversion of agricultural land into haphazard urban growth.


2019 ◽  
Vol 3 (1) ◽  
pp. 38
Author(s):  
Hailana Ben Ali

There are numerous important human activity factors which cause drastic reduction of the population of migratory birds as well as resident birds in the Libyan coastal areas and inner land too. Resulting into the deterioration of the ecosystems which support life, urban health, and simultaneously causes loss of urban heritage and place identity. The urban sprawl has increased significantly over the past few decades as a result of population growth and economic activity. This rapid urbanization seriously invaded agricultural land and natural environment to the extent of endangering rural and urban landscape. In the absence of legislative regulations; this uncontrolled spatial development is threatening wildlife habitat. Therefore, we see how urban expansion has gone out of control in many Libyan cities to an alarming rate surmounting the increase rate of population caused by extensive economic policies. These policies lack an ecological vision of preservation of cultural and natural heritage which would have ensured the realization of healthy ecosystem and a sustained vision towards the future of rebuilding Libya. This paper aims to identify the relationship between built environment and natural habitat for migratory and resident birds. The paper is using archival research methods by drawing together mortality causes from various sources so that human related factors can be placed in perspective with one another and perhaps, eventually, with other mortality factors in future studies. The paper attempts to shed light on the dangers faced by these birds including those inflicted by human activities. Finally, the paper tries to formalise general outlines for presenting safer urban environment for birds in the city. A strategy for green buildings and sustained urban design in order to preserve the fragile natural landscape and the endangered biological diversity in our Libyan cities.


2021 ◽  
Author(s):  
Jessie Smith

Conservation has been widely discussed as the best way to combat climate change and environmental degradation. A cornerstone of conservation is Sustainable Development, which involves mitigating the damage of urbanization and urban sprawl, and the resulting loss of agricultural resources. In response, Ontario developed the Greenbelt Act in 2005 to ensure that Ontario’s Agricultural Land base was protected from urbanization and development. This study analyzed land use change within the Greenbelt’s Protected Countryside, to determine if the lands were protected during the implementation of the Greenbelt Plan (2005 -2017), and the ten years prior without Greenbelt policy in effect. Using remote sensing change detection applications, it was determined that residential expansion within settlement areas, and aggregate mining operations within the Protected Countryside contribute to urban expansion and loss of prime agricultural land. Changes in aggregate resource extraction policy are recommended to reduce the use and reliance of virgin aggregate in Ontario.


2019 ◽  
Vol 11 (3) ◽  
pp. 654 ◽  
Author(s):  
Syed Manzoor ◽  
Aisha Malik ◽  
Muhammad Zubair ◽  
Geoffrey Griffiths ◽  
Martin Lukac

Urban sprawl causes changes in land use and a decline in many ecosystem services. Understanding the spatial patterns of sprawl and exploration of citizens’ perception towards the sporadic urban expansion and its impacts on an ecosystem to deliver services can help to guide land use planning and the conservation of the urban ecosystem. Here, we spatially examined land use changes in Multan, Pakistan, and investigated public perception about urban sprawl and its impacts on the quality and provision of ecosystem services, using a survey instrument. The spatial analysis of the historical land cover of Multan indicated an exponential expansion of the city in the last decade. Large areas of natural vegetation and agricultural land were converted to urban settlements in the past two decades. The citizens of Multan believe that the quality and provision of ecosystem services have declined in the recent past and strongly correlate the deteriorating ecosystem services with urban sprawl. Education and income levels of the respondents are the strongest predictors of urban ecosystem health literacy. Citizens associated with laborious outdoor jobs are more sensitive to the changes in ecosystem services. We concluded that the rapidly expanding cities, especially in the tropical arid zones, need to be prioritized for an increase in vegetation cover, and economically vulnerable settlements in these cities should be emphasized in climate change mitigation campaigns.


2019 ◽  
Vol 12 (1) ◽  
pp. 210
Author(s):  
Jun Ren ◽  
Wei Zhou ◽  
Xuelu Liu ◽  
Liang Zhou ◽  
Jing Guo ◽  
...  

China is undergoing rapid urbanization, which has caused undesirable urban sprawl and ecological deterioration. Urban growth boundaries (UGBs) are an effective measure to restrict the irrational urban sprawl and protect the green space. However, the delimiting method and control measures of the UGBs is at the exploratory stage in China. In this paper, a cellular automata model based on multi-criteria evaluation (MCE-CA) was proposed to delimit the UGBs. The MCE-CA model considers influencing factors related to urban growth and generates UGBs based on spatiotemporally dynamic simulations. The MCE-CA model was applied to generate the UGBs of Jiayuguan City in 2020 and 2030, the results show that the simulation accuracy is higher than 0.8 and the compactness increases to 0.23, which demonstrates that the MCE-CA model is an effective model for delimiting UGBs. Moreover, the MCE-CA model can corporate the contradiction between environmental protection and urban development, promoting urban smart growth and sustainable development. UGBs is an effective tool for China to realize ecological civilization construction and improve the spatial governance ability, and the MCE-CA model can be used to assist planners in delimiting future UGBs, this study provides a methodological reference for future research of UGBs in Chinese cities.


Sign in / Sign up

Export Citation Format

Share Document