scholarly journals Analyzing Variations in the Association of Eurasian Winter–Spring Snow Water Equivalent and Autumn Arctic Sea Ice

2022 ◽  
Vol 14 (2) ◽  
pp. 243
Author(s):  
Jiajun Feng ◽  
Yuanzhi Zhang ◽  
Jin Yeu Tsou ◽  
Kapo Wong

Because Eurasian snow water equivalent (SWE) is a key factor affecting the climate in the Northern Hemisphere, understanding the distribution characteristics of Eurasian SWE is important. Through empirical orthogonal function (EOF) analysis, we found that the first and second modes of Eurasian winter SWE present the distribution characteristics of an east–west dipole and north–south dipole, respectively. Moreover, the distribution of the second mode is caused by autumn Arctic sea ice, with the distribution of the north–south dipole continuing into spring. As the sea ice of the Barents–Kara Sea (BKS) decreases, a negative-phase Arctic oscillation (AO) is triggered over the Northern Hemisphere in winter, with warm and humid water vapor transported via zonal water vapor flux over the North Atlantic to southwest Eurasia, encouraging the accumulation of SWE in the southwest. With decreases in BKS sea ice, zonal water vapor transport in northern Eurasia is weakened, with meridional water vapor flux in northern Eurasia obstructing water vapor transport from the North Atlantic, discouraging the accumulation of SWE in northern Eurasia in winter while helping preserve the cold climate of the north. The distribution characteristics of Eurasian spring SWE are determined primarily by the memory effect of winter SWE. Whether analyzed through linear regression or support vector machine (SVM) methods, BKS sea ice is a good predictor of Eurasian winter SWE.

2021 ◽  
Author(s):  
Hongmei Ren ◽  
Ang Li ◽  
Pinhua Xie ◽  
Zhaokun Hu ◽  
Jin Xu ◽  
...  

<p>      Water vapor transport affects regional precipitation and climate change. The measurement of precipitable water and water vapor flux is of great significance to the study of precipitation and water vapor transport. In the study, a new method of computing the precipitable water and estimating the water vapor transport flux using multi-axis differential optical absorption spectroscopy (MAX-DOAS) were presented. The calculated precipitable water and water vapor flux were compared to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the correlation coefficient of the precipitable water, the zonal and meridional water vapor flux and ECMWF are r≥0.92, r=0.77 and r≥0.89, respectively. The seasonal and diurnal climatologies of precipitable water and water vapor flux in the coastal (Qingdao) and inland (Xi’an) cities of China using this method were analyzed from June 1, 2019 to May 31, 2020. The results indicated that the seasonal and diurnal variation characteristics of the precipitable water in the two cities were similar. The zonal fluxes of the two cities were mainly transported from west to east, Qingdao's meridional flux was mainly transported to the south, and Xi'an was mainly transported to the north. The results also indicated that the water vapor flux transmitting belts appear near 2km and 1.4km above the surface in Qingdao and appeared around 2.8km, 1.6km and 1.0km in Xi'an. </p>


2017 ◽  
Vol 18 (5) ◽  
pp. 1359-1374 ◽  
Author(s):  
Benjamin J. Hatchett ◽  
Susan Burak ◽  
Jonathan J. Rutz ◽  
Nina S. Oakley ◽  
Edward H. Bair ◽  
...  

Abstract The occurrence of atmospheric rivers (ARs) in association with avalanche fatalities is evaluated in the conterminous western United States between 1998 and 2014 using archived avalanche reports, atmospheric reanalysis products, an existing AR catalog, and weather station observations. AR conditions were present during or preceding 105 unique avalanche incidents resulting in 123 fatalities, thus comprising 31% of western U.S. avalanche fatalities. Coastal snow avalanche climates had the highest percentage of avalanche fatalities coinciding with AR conditions (31%–65%), followed by intermountain (25%–46%) and continental snow avalanche climates (<25%). Ratios of avalanche deaths during AR conditions to total AR days increased with distance from the coast. Frequent heavy to extreme precipitation (85th–99th percentile) during ARs favored critical snowpack loading rates with mean snow water equivalent increases of 46 mm. Results demonstrate that there exists regional consistency between snow avalanche climates, derived AR contributions to cool season precipitation, and percentages of avalanche fatalities during ARs. The intensity of water vapor transport and topographic corridors favoring inland water vapor transport may be used to help identify periods of increased avalanche hazard in intermountain and continental snow avalanche climates prior to AR landfall. Several recently developed AR forecast tools applicable to avalanche forecasting are highlighted.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Zhang ◽  
Kang Liu ◽  
Yaohui Li ◽  
Wei Shen ◽  
Yulong Ren ◽  
...  

Drought in eastern Northwest China (ENC) is severely affected by water vapor conditions. An in-depth study of the primary sources of water vapor and its characteristics, at intraseasonal and interannual timescales, was conducted. This information is crucial for further study of the causes and mechanisms of extreme droughts and floods in the ENC. This study evaluated the spatial distribution and transport characteristics of water vapor over ENC during the 1981–2019 period based on the fifth generation of the European Center for Medium-Range Weather Forecasts atmospheric reanalyzes data of the global climate (ERA5). We studied the water vapor transport routes, water vapor convergence, water vapor budgets as well as the changes in water vapor fluxes and budgets over time in four areas surrounding ENC. The Mediterranean Sea, Black Sea, Caspian Sea, Indian Ocean, Bay of Bengal, and the South China Sea were the main sources of water vapor in ENC, supplemented by mid to high-latitude continental sources. The monthly change in water vapor flux in ENC exhibited the peak on July. The transport of water vapor in ENC was mainly toward the east and north. For most cross-seasonal drought events, the water vapor output is the main way in the south boundary and the west boundary. However, for the longest duration of cross-seasonal strong drought events, it is characterized by that the water vapor output is the main way in the south boundary, while the water vapor input in the north boundary is obviously weak. Water vapor paths in cross-seasonal strong drought events are analyzed, by which the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT). The intensity of the subtropical high in the western Pacific is weak and the position is south, which corresponds to the occurrence of cross-seasonal strong drought in the ENC.


2008 ◽  
Vol 9 (1) ◽  
pp. 22-47 ◽  
Author(s):  
Paul J. Neiman ◽  
F. Martin Ralph ◽  
Gary A. Wick ◽  
Jessica D. Lundquist ◽  
Michael D. Dettinger

Abstract The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005. The north coast experienced 301 AR days, while the south coast had only 115. Most ARs occurred during the warm season in the north and cool season in the south, despite the fact that the cool season is climatologically wettest for both regions. Composite SSM/I IWV analyses showed landfalling wintertime ARs extending northeastward from the tropical eastern Pacific, whereas the summertime composites were zonally oriented and, thus, did not originate from this region of the tropics. Companion SSM/I composites of daily rainfall showed significant orographic enhancement during the landfall of winter (but not summer) ARs. The NCEP–NCAR global reanalysis dataset and regional precipitation networks were used to assess composite synoptic characteristics and overland impacts of landfalling ARs. The ARs possess strong vertically integrated horizontal water vapor fluxes that, on average, impinge on the West Coast in the pre-cold-frontal environment in winter and post-cold-frontal environment in summer. Even though the IWV in the ARs is greater in summer, the vapor flux is stronger in winter due to much stronger flows associated with more intense storms. The landfall of ARs in winter and north-coast summer coincides with anomalous warmth, a trough offshore, and ridging over the Intermountain West, whereas the south-coast summer ARs coincide with relatively cold conditions and a near-coast trough. ARs have a much more profound impact on near-coast precipitation in winter than summer, because the terrain-normal vapor flux is stronger and the air more nearly saturated in winter. During winter, ARs produce roughly twice as much precipitation as all storms. In addition, wintertime ARs with the largest SSM/I IWV are tied to more intense storms with stronger flows and vapor fluxes, and more precipitation. ARs generally increase snow water equivalent (SWE) in autumn/winter and decrease SWE in spring. On average, wintertime SWE exhibits normal gains during north-coast AR storms and above-normal gains during the south-coast AR storms. The north-coast sites are mostly lower in altitude, where warmer-than-normal conditions more frequently yield rain. During those events when heavy rain from a warm AR storm falls on a preexisting snowpack, flooding is more likely to occur.


2013 ◽  
Vol 26 (15) ◽  
pp. 5523-5536 ◽  
Author(s):  
Bingyi Wu ◽  
Renhe Zhang ◽  
Rosanne D'Arrigo ◽  
Jingzhi Su

Abstract Using NCEP–NCAR reanalysis and Japanese 25-yr Reanalysis (JRA-25) data, this paper investigates the association between winter sea ice concentration (SIC) in Baffin Bay southward to the eastern coast of Newfoundland, and the ensuing summer atmospheric circulation over the mid- to high latitudes of Eurasia. It is found that winter SIC anomalies are significantly correlated with the ensuing summer 500-hPa height anomalies that dynamically correspond to the Eurasian pattern of 850-hPa wind variability and significantly influence summer rainfall variability over northern Eurasia. Spring atmospheric circulation anomalies south of Newfoundland, associated with persistent winter–spring SIC and a horseshoe-like pattern of sea surface temperature (SST) anomalies in the North Atlantic, act as a bridge linking winter SIC and the ensuing summer atmospheric circulation anomalies over northern Eurasia. Indeed, this study only reveals the association based on observations and simple simulation experiments with SIC forcing. The more precise mechanism for this linkage needs to be addressed in future work using numerical simulations with SIC and SST as the external forcings. The results herein have the following implication: Winter SIC west of Greenland is a possible precursor for summer atmospheric circulation and rainfall anomalies over northern Eurasia.


2017 ◽  
Vol 50 (1-2) ◽  
pp. 443-443 ◽  
Author(s):  
Mihaela Caian ◽  
Torben Koenigk ◽  
Ralf Döscher ◽  
Abhay Devasthale

2020 ◽  
Vol 11 (S1) ◽  
pp. 233-250 ◽  
Author(s):  
Farahnaz Fazel-Rastgar

Abstract The observed unusually high temperatures in the Arctic during recent decades can be related to the Arctic sea ice declines in summer 2007, 2012 and 2016. Arctic dipole formation has been associated with all three heatwaves of 2007, 2012 and 2016 in the Canadian Arctic. Here, the differences in weather patterns are investigated and compared with normal climatological mean (1981–2010) structures. This study examines the high-resolution datasets from the North American Regional Reanalysis model. During the study periods, the north of Alaska has been affected by the low-pressure tongue. The maximum difference between Greenland high-pressure centre and Alaska low-pressure tongue for the summers of 2012, 2016 and 2007 are 8 hPa, 7 hPa and 6 hPa, respectively, corresponding and matching to the maximum summer surface Canadian Arctic temperature records. During anomalous summer heatwaves, low-level wind, temperatures, total clouds (%) and downward radiation flux at the surface are dramatically changed. This study shows the surface albedo has been reduced over most parts of the Canadian Arctic Ocean during the mentioned heatwaves (∼5–40%), with a higher change (specifically in the eastern Canadian Arctic region) during summer 2012 in comparison with summer 2016 and summer 2007, agreeing with the maximum surface temperature and sea ice decline records.


2015 ◽  
Vol 16 (1) ◽  
pp. 118-128 ◽  
Author(s):  
Michael D. Warner ◽  
Clifford F. Mass ◽  
Eric P. Salathé

Abstract Most extreme precipitation events that occur along the North American west coast are associated with winter atmospheric river (AR) events. Global climate models have sufficient resolution to simulate synoptic features associated with AR events, such as high values of vertically integrated water vapor transport (IVT) approaching the coast. From phase 5 of the Coupled Model Intercomparison Project (CMIP5), 10 simulations are used to identify changes in ARs impacting the west coast of North America between historical (1970–99) and end-of-century (2070–99) runs, using representative concentration pathway (RCP) 8.5. The most extreme ARs are identified in both time periods by the 99th percentile of IVT days along a north–south transect offshore of the coast. Integrated water vapor (IWV) and IVT are predicted to increase, while lower-tropospheric winds change little. Winter mean precipitation along the west coast increases by 11%–18% [from 4% to 6% (°C)−1], while precipitation on extreme IVT days increases by 15%–39% [from 5% to 19% (°C)−1]. The frequency of IVT days above the historical 99th percentile threshold increases as much as 290% by the end of this century.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


Sign in / Sign up

Export Citation Format

Share Document