scholarly journals Energy Consumption Behaviors of 802.11 and S-MAC: Implementation on NS2.35

2018 ◽  
Vol 7 (3.16) ◽  
pp. 81 ◽  
Author(s):  
Meena Malik ◽  
Mukesh Sharma

The Sensor technology has made encouraging trends in the field of wireless Networks by its innovative methods and adaptability. The  fundamental issue for wireless sensor networks (WSN) is to minimize energy consumption at each node due to restricted energy source.   The sensor nodes generally get random deployment and  need cooperation to accomplish specific operation in the network like  monitoring or  tracking any target in the environment. Due to limited power source nodes need careful use of energy resources. This work targets on simulating the power consumption behavior and analyzing the performance of 802.11 and S-MAC protocol for medium access control layer in wireless networks. S-MAC improves energy consumption by allocating bandwidth in efficient manner and  avoiding causes of energy waste. After simulation, it was found that S-MAC is Power-Efficient over 802.11 without losing on the performance using NS-2.35. The paper mainly emphasize on representing the plot for energy matrices along with throughput, delay and packet delivery ratio.  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aparna Ashok Kamble ◽  
Balaji Madhavrao Patil

Abstract Wireless networks involve spatially extended independent sensor nodes, and it is associated with each other’s to preserve and identify physical and environmental conditions of the particular application. The sensor nodes batteries are equipped with restricted energy for working with an energy source. Consequently, efficient energy consumption is themain important challenge in wireless networks, and it is outfitted witharestricted power storage capacity battery. Therefore, routing protocol with energy efficiency is essential in wireless sensor network (WSN) to offer data transmission and connectivity with less energy consumption. As a result, the routing scheme is the main factor for decreasing energy consumption and the network's lifetime. The energy-aware routing model is mainly devised for WSN with high network performance when transmitting data to a sink node. Hence, in this paper, the effectiveness of energy-aware routing protocols in mobile sink-based WSNs is analyzed and justified. Some energy-aware routing systems in mobile sink-based WSN techniques, such as optimizing low-energy adaptive clustering hierarchy (LEACH) clustering approach, hybrid model using fuzzy logic, and mobile sink. The fuzzy TOPSIS-based cluster head selection (CHS) technique, mobile sink-based energy-efficient CHS model, and hybrid Harris Hawk-Salp Swarm (HH-SS) optimization approach are taken for the simulation process. Additionally, the analytical study is executed using various conditions, like simulation, cluster size, nodes, mobile sink speed, and rounds. Moreover, the performance of existing methods is evaluated using various parameters, namely alive node, residual energy, delay, and packet delivery ratio (PDR).


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.


2017 ◽  
Vol 26 (1) ◽  
pp. 17-28
Author(s):  
Mohammed Saad Talib

Energy in Wireless Sensor networks (WSNs) represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. Principally, WSNs operate with battery-powered sensors. Since Sensor's batteries have not been easily recharge.  Therefore, prediction of the WSN represents a significant concern. Basically, the network failure occurs due to the inefficient sensor's energy. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC) protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup time. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure effective network throughput. To ensure energy efficiency the sensors' duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and idle states was also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the energy consumption of the sensor nodes. Results for these states with much performance metrics were also studied and discussed.   


The advent of wireless sensor networks (WSN) has led in recent revolutionary modifications in electronic and communication systems .Various applications in wireless network needs time synchronization as a basic requirement. Wireless sensor nodes are tiny in size and operated at low energy to record the required physical parameters for low-duty apps. Because nodes have a tiny battery with a lower life span, power management is crucial for long-term working with the sensors. Wireless Sensor Network is a set of sensor nodes used to send and receive data packets from one sensor node to another. This work aims to propose three protocols such as Receiver Centric MAC protocol (RC-MAC), Improved Receiver Centric MAC protocol (IRC-MAC) and Intelligent Traffic and Resource Elastic Energy MAC protocol (ITREE-MAC) for the WSN environment and based on the application. These protocols help in studying the parametric measures such as delay, energy consumption, packet delivery ratio and throughput. The comparative analysis is carried out to select the more efficient protocol for the application of wireless sensor networks. This research work is implemented and simulated by using NS 2.35 Simulator. Based on the simulation results obtained for proposed protocols using the NS2 simulator. The performance of ITREE-MAC protocol shows better results for parameters end to end delay, energy consumption, throughput, packet delivery ratio. So the overall performance of ITREE-MAC protocol is much better than other three IEEE802.11 MAC, RC-MAC and IRC-MAC protocols. As per results obtained, energy consumption is less in ITREE-MAC protocol and save the power in wireless sensor network applications


2021 ◽  
Vol 7 ◽  
pp. e733
Author(s):  
Abdulrahman Sameer Sadeq ◽  
Rosilah Hassan ◽  
Azana Hafizah Mohd Aman ◽  
Hasimi Sallehudin ◽  
Khalid Allehaibi ◽  
...  

The development of Medium Access Control (MAC) protocols for Internet of Things should consider various aspects such as energy saving, scalability for a wide number of nodes, and grouping awareness. Although numerous protocols consider these aspects in the limited view of handling the medium access, the proposed Grouping MAC (GMAC) exploits prior knowledge of geographic node distribution in the environment and their priority levels. Such awareness enables GMAC to significantly reduce the number of collisions and prolong the network lifetime. GMAC is developed on the basis of five cycles that manage data transmission between sensors and cluster head and between cluster head and sink. These two stages of communication increase the efficiency of energy consumption for transmitting packets. In addition, GMAC contains slot decomposition and assignment based on node priority, and, therefore, is a grouping-aware protocol. Compared with standard benchmarks IEEE 802.15.4 and industrial automation standard 100.11a and user-defined grouping, GMAC protocols generate a Packet Delivery Ratio (PDR) higher than 90%, whereas the PDR of benchmark is as low as 75% in some scenarios and 30% in others. In addition, the GMAC accomplishes lower end-to-end (e2e) delay than the least e2e delay of IEEE with a difference of 3 s. Regarding energy consumption, the consumed energy is 28.1 W/h for GMAC-IEEE Energy Aware (EA) and GMAC-IEEE, which is less than that for IEEE 802.15.4 (578 W/h) in certain scenarios.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2806 ◽  
Author(s):  
Faisal Alfouzan ◽  
Alireza Shahrabi ◽  
Seyed Ghoreyshi ◽  
Tuleen Boutaleb

Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


2021 ◽  
Author(s):  
Jenice Prabu A ◽  
Hevin Rajesh D

Abstract In Wireless sensor network, the major issues are security and energy consumption. There may be several numbers of malicious nodes present in sensor networks. Several techniques have been proposed by the researchers to identify these malicious nodes. WSNs contain many sensor nodes that sense their environment and also transmit their data via multi-hop communication schemes to the base station. These sensor nodes provides power supply using battery and the energy consumption of these batteries must be low. Securing the data is to avoid attacks on these nodes and data communication. The aggregation of data helps to minimize the amount of messages transmitted within the network and thus reduces overall network energy consumption. Moreover, the base station may distinguish the encrypted and aggregated data based on the encryption keys during the decryption of the aggregated data. In this paper, two aspects of the problem is concerned, we investigate the efficiency of data aggregation: first, how to develop cluster-based routing algorithms to achieve the lowest energy consumption for aggregating data, and second, security issues in wsn. By using Network simulator2 (NS2) this scheme is simulated. In the proposed scheme, energy consumption, packet delivery ratio and throughput is analyzed. The proposed clustering, routing, and protection protocol based on the MCSDA algorithm shows significant improvement over the state-of - the-art protocol.


Duty cycle of a Medium Access Control (MAC) protocol is made up of sleep phase, wake-up phase and listen phase. MAC protocols usually proposes to optimize the duration of the wake-up and listen phases, in order to increase the duration of the sleep phase, thereby reducing the unwanted energy consumption of the wireless node. In this paper, we propose an Artificial Intelligence (AI) and machine learning (ML) based approach, which uses a hybrid combination of Time Division Multiple Access (TDMA), Bitmap Assisted MAC (BMA) and Sensor MAC (SMAC). The machine learning layer utilizes the duty cycle in the MAC layer, and generates multiple solutions for a given wireless communication. The AI layer then selects the best solution from the generated solutions by incorporating a duty cycle factor in the selection function, thereby optimizing the duty cycle of the protocol. The proposed system shows a 15% improvement in communication speed, and a 10% reduction in energy consumption across multiple communications. We plan to further extend this work for rural India, and apply it to real time agricultural applications.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3732 ◽  
Author(s):  
Mohammed Sani Adam ◽  
Lip Yee Por ◽  
Mohammad Rashid Hussain ◽  
Nawsher Khan ◽  
Tan Fong Ang ◽  
...  

Many receiver-based Preamble Sampling Medium Access Control (PS-MAC) protocols have been proposed to provide better performance for variable traffic in a wireless sensor network (WSN). However, most of these protocols cannot prevent the occurrence of incorrect traffic convergence that causes the receiver node to wake-up more frequently than the transmitter node. In this research, a new protocol is proposed to prevent the problem mentioned above. The proposed mechanism has four components, and they are Initial control frame message, traffic estimation function, control frame message, and adaptive function. The initial control frame message is used to initiate the message transmission by the receiver node. The traffic estimation function is proposed to reduce the wake-up frequency of the receiver node by using the proposed traffic status register (TSR), idle listening times (ILTn, ILTk), and “number of wake-up without receiving beacon message” (NWwbm). The control frame message aims to supply the essential information to the receiver node to get the next wake-up-interval (WUI) time for the transmitter node using the proposed adaptive function. The proposed adaptive function is used by the receiver node to calculate the next WUI time of each of the transmitter nodes. Several simulations are conducted based on the benchmark protocols. The outcome of the simulation indicates that the proposed mechanism can prevent the incorrect traffic convergence problem that causes frequent wake-up of the receiver node compared to the transmitter node. Moreover, the simulation results also indicate that the proposed mechanism could reduce energy consumption, produce minor latency, improve the throughput, and produce higher packet delivery ratio compared to other related works.


Sign in / Sign up

Export Citation Format

Share Document