scholarly journals Compressibility of High-Density EEG Signals in Stroke Patients

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4107 ◽  
Author(s):  
Nadia Mammone ◽  
Simona De Salvo ◽  
Cosimo Ieracitano ◽  
Silvia Marino ◽  
Emanuele Cartella ◽  
...  

Stroke is a critical event that causes the disruption of neural connections. There is increasing evidence that the brain tries to reorganize itself and to replace the damaged circuits, by establishing compensatory pathways. Intra- and extra-cellular currents are involved in the communication between neurons and the macroscopic effects of such currents can be detected at the scalp through electroencephalographic (EEG) sensors. EEG can be used to study the lesions in the brain indirectly, by studying their effects on the brain electrical activity. The primary goal of the present work was to investigate possible asymmetries in the activity of the two hemispheres, in the case one of them is affected by a lesion due to stroke. In particular, the compressibility of High-Density-EEG (HD-EEG) recorded at the two hemispheres was investigated since the presence of the lesion is expected to impact on the regularity of EEG signals. The secondary objective was to evaluate if standard low density EEG is able to provide such information. Eighteen patients with unilateral stroke were recruited and underwent HD-EEG recording. Each EEG signal was compressively sensed, using Block Sparse Bayesian Learning, at increasing compression rate. The two hemispheres showed significant differences in the compressibility of EEG. Signals acquired at the electrode locations of the affected hemisphere showed a better reconstruction quality, quantified by the Structural SIMilarity index (SSIM), than the EEG signals recorded at the healthy hemisphere (p < 0.05), for each compression rate value. The presence of the lesion seems to induce an increased regularity in the electrical activity of the brain, thus an increased compressibility.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3345
Author(s):  
Enrico Zero ◽  
Chiara Bersani ◽  
Roberto Sacile

Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.


2021 ◽  
Vol 11 (6) ◽  
pp. 1580-1589
Author(s):  
R. Partheepan ◽  
J. Raja Paul Perinbam ◽  
M. Krishnamurthy ◽  
N. R. Shanker

The neurologist analyses the brain images to diagnose disease via structure and shape of the part in scanned Medical images such as CT, MRI, and PET. The Medical image segmentation performs less in the regions where no or little contrast, artifacts over the different boundary regions. The manual process of segmentation shows poor boundary differentiation due to discernibility in shape and location, intra and inter observer reliability. In this paper, we propose dyadic CAT optimization (DCO) algorithm to segment the regions in the brain from CT and MRI image via Non-linear perspective Foreground and Back Ground projection. The DCO algorithm removes the artifacts in the boundary regions and provide the exact structure and shape of the brain regions. The DCO algorithm shows the region boundary for pterygomaxillary fissure, occipital lobe, vaginal process zygomatic arch, maxilla and piriform aperture in brain image with high visibility in the regions of inadequately visible boundary and distinguishes the deformable shape. The DCO algorithm applies on 50 images and eight images with complex bone and muscle mass structure for performance evaluation. The DCO algorithm shows the increased Structural similarity index (SSIM) with 90% accuracy.


Author(s):  
Thirumagal Jayaraman ◽  
Sravan Reddy M. ◽  
Manjunatha Mahadevappa ◽  
Anup Sadhu ◽  
Pranab Kumar Dutta

AbstractNeurodegenerative disorders are commonly characterized by atrophy of the brain which is caused by neuronal loss. Ventricles are one of the prominent structures in the brain; their shape changes, due to their content, the cerebrospinal fluid. Analyzing the morphological changes of ventricles, aids in the diagnosis of atrophy, for which the region of interest needs to be separated from the background. This study presents a modified distance regularized level set evolution segmentation method, incorporating regional intensity information. The proposed method is implemented for segmenting ventricles from brain images for normal and atrophy subjects of magnetic resonance imaging and computed tomography images. Results of the proposed method were compared with ground truth images and produced sensitivity in the range of 65%–90%, specificity in the range of 98%–99%, and accuracy in the range of 95%–98%. Peak signal to noise ratio and structural similarity index were also used as performance measures for determining segmentation accuracy: 95% and 0.95, respectively. The parameters of level set formulation vary for different datasets. An optimization procedure was followed to fine tune parameters. The proposed method was found to be efficient and robust against noisy images. The proposed method is adaptive and multimodal.


Author(s):  
Malika Garg

Abstract: Electroencephalography (EEG) helps to predict the state of the brain. It tells about the electrical activity going on in the brain. Difference of the surface potential evolved from various activities get recorded as EEG. The analysis of these EEG signals is of utmost importance to solve the problems related to the brain. Signal pre-processing, feature extraction and classification are the main steps of the EEG signal analysis. In this article we discussed various processing techniques of EEG signals. Keywords: EEG, analysis, signal processing, feature extraction, classification


EEG is the term used for recording the brain electrical activity. In Electroencephalography, the encephalon means brain. EEG measures electrical activity generated by thousands of neurons that exists in human brain. The brain electrical activity is measured in voltages. This paper is focused on recognizing emotion from human activity, measured by EEG signals. Making the computer more empathic to the user is one of the aspects of affective computing. With EEG-based emotion detection, the computer can actually take a look inside user’s head to observe their mental state. A low power, low noise and high sensitive analog signal from brain decoded into filtered digital output. The decoder picks a low amplitude and a microvolt signal from brain and decodes it into a filtered and amplified output. As of thelatestattentiongiving fromexaminationteam in creatingsensitivecommunicationamong human beings and peripheral device, the proof of identity of emotive state of the previousdeveloped a necessity. Electro-encephalography establishedimportantconsideration from scientists, becausethey establish modest, inexpensive, transportable, and easily solving theidentification of mind states in this paper.[2] In this paper, it provide a comprehensive overviewfrompresent works in emotion detection using EEG signals


2016 ◽  
Vol 48 (4) ◽  
pp. 295-300 ◽  
Author(s):  
S. Thomas George ◽  
R. Balakrishnan ◽  
J. Stanly Johnson ◽  
J. Jayakumar

EEG records the spontaneous electrical activity of the brain using multiple electrodes placed on the scalp, and it provides a wealth of information related to the functions of brain. Nevertheless, the signals from the electrodes cannot be directly applied to a diagnostic tool like brain mapping as they undergo a “mixing” process because of the volume conduction effect in the scalp. A pervasive problem in neuroscience is determining which regions of the brain are active, given voltage measurements at the scalp. Because of which, there has been a surge of interest among the biosignal processing community to investigate the process of mixing and unmixing to identify the underlying active sources. According to the assumptions of independent component analysis (ICA) algorithms, the resultant mixture obtained from the scalp can be closely approximated by a linear combination of the “actual” EEG signals emanating from the underlying sources of electrical activity in the brain. As a consequence, using these well-known ICA techniques in preprocessing of the EEG signals prior to clinical applications could result in development of diagnostic tool like quantitative EEG which in turn can assist the neurologists to gain noninvasive access to patient-specific cortical activity, which helps in treating neuropathologies like seizure disorders. The popular and proven ICA schemes mentioned in various literature and applications were selected (which includes Infomax, JADE, and SOBI) and applied on generalized seizure disorder samples using EEGLAB toolbox in MATLAB environment to see their usefulness in source separations; and they were validated by the expert neurologist for clinical relevance in terms of pathologies on brain functionalities. The performance of Infomax method was found to be superior when compared with other ICA schemes applied on EEG and it has been established based on the validations carried by expert neurologist for generalized seizure and its clinical correlation. The results are encouraging for furthering the studies in the direction of developing useful brain mapping tools using ICA methods.


2014 ◽  
Vol 19 (5) ◽  
pp. 3-12
Author(s):  
Lorne Direnfeld ◽  
David B. Torrey ◽  
Jim Black ◽  
LuAnn Haley ◽  
Christopher R. Brigham

Abstract When an individual falls due to a nonwork-related episode of dizziness, hits their head and sustains injury, do workers’ compensation laws consider such injuries to be compensable? Bearing in mind that each state makes its own laws, the answer depends on what caused the loss of consciousness, and the second asks specifically what happened in the fall that caused the injury? The first question speaks to medical causation, which applies scientific analysis to determine the cause of the problem. The second question addresses legal causation: Under what factual circumstances are injuries of this type potentially covered under the law? Much nuance attends this analysis. The authors discuss idiopathic falls, which in this context means “unique to the individual” as opposed to “of unknown cause,” which is the familiar medical terminology. The article presents three detailed case studies that describe falls that had their genesis in episodes of loss of consciousness, followed by analyses by lawyer or judge authors who address the issue of compensability, including three scenarios from Arizona, California, and Pennsylvania. A medical (scientific) analysis must be thorough and must determine the facts regarding the fall and what occurred: Was the fall due to a fit (eg, a seizure with loss of consciousness attributable to anormal brain electrical activity) or a faint (eg, loss of consciousness attributable to a decrease in blood flow to the brain? The evaluator should be able to fully explain the basis for the conclusions, including references to current science.


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Sign in / Sign up

Export Citation Format

Share Document