scholarly journals Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1149 ◽  
Author(s):  
Sofiane Bouhedma ◽  
Yuhang Zheng ◽  
Fred Lange ◽  
Dennis Hohlfeld

In this paper, we present a novel vibration-based piezoelectric energy harvester, capable of collecting power at multiple operating frequencies and autonomously adapting itself to the dominant ambient frequencies. It consists of a compact dual-frequency resonator designed such that the first two fundamental natural frequencies are in the range of [50, 100] Hz, which is a typical frequency range for ambient vibrations in industrial environments. A magnetic frequency-tuning scheme is incorporated into the structure, which enables the frequency agility of the system. In contrast to single frequency harvesters, the presented approach combines multi-resonance and frequency tunability of both modes enabling a larger operative bandwidth. We experimentally demonstrate independent bi-directional tunability of our dual-frequency design. Furthermore, a control algorithm based on maximum amplitude tracking has been implemented for self-adaption of the system. The latter has been demonstrated in a system-level simulation model, which integrates the dual-frequency resonator, the magnetic tuning, and the control algorithm.

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 91 ◽  
Author(s):  
Sofiane Bouhedma ◽  
Yongchen Rao ◽  
Arwed Schütz ◽  
Chengdong Yuan ◽  
Siyang Hu ◽  
...  

In this paper, we present a macroscale multiresonant vibration-based energy harvester. The device features frequency tunability through magnetostatic actuation on the resonator. The magnetic tuning scheme uses external magnets on linear stages. The system-level model demonstrates autonomous adaptation of resonance frequency to the dominant ambient frequencies. The harvester is designed such that its two fundamental modes appear in the range of (50,100) Hz which is a typical frequency range for vibrations found in industrial applications. The dual-frequency characteristics of the proposed design together with the frequency agility result in an increased operative harvesting frequency range. In order to allow a time-efficient simulation of the model, a reduced order model has been derived from a finite element model. A tuning control algorithm based on maximum-voltage tracking has been implemented in the model. The device was characterized experimentally to deliver a power output of 500 µW at an excitation level of 0.5 g at the respected frequencies of 63.3 and 76.4 Hz. In a design optimization effort, an improved geometry has been derived. It yields more close resonance frequencies and optimized performance.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 908 ◽  
Author(s):  
Sofiane Bouhedma ◽  
Yuhang Zheng ◽  
Dennis Hohlfeld

In this paper, we present a concept, simulation and characterization results of a dual-frequency piezoelectric energy harvester with magnetic frequency tuning capabilities. We demonstrate that the frequency-agile multi-mode capability enables the device to harvest on a wider range of operating frequencies than classical vibration harvesters.


Author(s):  
Saman Nezami ◽  
HyunJun Jung ◽  
Myung Kyun Sung ◽  
Soobum Lee

This paper presents mathematical modeling of an energy harvester (EH) for a wireless structure health monitoring (SHM) system in wind turbine blades. The harvester consists of a piezoelectric energy harvester (PEH) beam, a gravity-induced disk, and magnets attached to both the beam and the disk. An electromechanical model of the proposed EH is developed using the energy method with repelling magnetic force considered. The three coupled equations — the motion of the disk, the vibration of the beam, and the voltage output — are derived and solved using ODE45 in MATLAB software. The result showed the blade rotation speed affects the output angular velocity of disk and the output PEH voltage. That is, as the blade speed increases, the disk angular velocity becomes nonlinear and chaotic which is more beneficial to generate larger power.


2021 ◽  
pp. 1-31
Author(s):  
Xiang Zhao ◽  
Weidong Zhu ◽  
Ying-hui Li

Abstract Vibration energy harvesting problems have strongly developed in recent years. However, many researchers just consider bending vibration models of energy harvesters. As a matter of fact, torsional vibration is also important and cannot be ignored in many cases. In this work, closed-form solutions of bending-torsion coupled forced vibrations of a piezoelectric energy harvester subjected to a fluid vortex are derived. Timoshenko beam model is used for modeling the energy harvester, and the extended Hamilton's principle is used in the modeling process. Since piezoelectric effects in both bending and torsional directions are considered, two kinds of electric coupling effects appear in forced vibration equations, and a new model for the electric circuit equation is developed. Lamb-Oseen vortex model is considered in this study. Both the external aerodynamic force and moment are simple harmonic loads. Three damping coefficients are considered in the present model. Based on Green's function method, closed-form solutions of the piezoelectric energy harvester subjected to the water vortex are derived. Some published results are used to verify the present solutions. It can be concluded through analysis that when torsional vibration is considered, the bandwidth of the high energy area of the voltage becomes large, and the bending-torsion coupled vibration energy harvester can produce more power than a transverse vibration energy harvester.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Shilong Sun ◽  
Xiao Zhang

This paper presents a folded nonlinear electro-magneto-mechanical (EMM) vibration-based piezoelectric energy harvester system, which is built on the cantilevered beam structure and consists of one host beam and two substrate plates. The performance of the linearity and nonlinearity to the proposed EMM system is evaluated and compared. Moreover, the voltage response in time history and the phase portrait are studied under an external rectifier circuit with a resistor. The results show that the nonlinearity of the reported EMM system changes the coherent resonance vibration mode from single to double under a harmonic base excitation within the frequency range of 20 Hz–50 Hz. Meanwhile, the substrate plate D contributes more averaged voltage output at a lower frequency while the substrate plate A contributes the voltage output at the relatively higher frequency for the nonlinear EMM system. The experimental study indicates that the proposed nonlinear EMM vibration-based piezoelectric energy harvester can yield a total voltage of 8.133 [email protected] Hz while the baseline structure only produces 1.724 [email protected] Hz. In addition, the bandwidth range of high-power output is enlarged by the nonlinear EMM system, which makes this device more flexible and applicable to absorb the wasted vibration energy generated by industrial machines and public facilities.


Author(s):  
Haiping Liu ◽  
Dongmei Zhu

The paper concerns the dynamic responses and vibration energy harvesting characteristics in an electromagnetic vibration energy harvester comprising three-parameter mechanical vibration subsystem. For completeness and comparison, a two-parameter vibration energy harvester is also presented. The analytical expressions of the amplitude-frequency and phase-frequency responses of the inertial mass and the current in the electrical circuit are respectively derived by applying dimensionless method to the studied two- and three-parameter dynamic systems. Considering the effects of different types of ambient excitation, a single-frequency harmonic load and a periodic load are introduced into the analytical expressions on the dynamic performance of the vibration energy harvester. First of all, the influences of the designing parameters from the mechanical vibration subsystem and the electrical circuit subsystem on the vibration energy harvester are investigated. For evaluating the effects due to introducing the three-parameter mechanical vibration component, comparisons are made between two- and three-parameter vibration energy harvesters to convert the ambient excitations into electrical energy. And then, the expressions of the dimensionless average power which delivered into an electrical load under a single-frequency harmonic excitation or a periodic excitation are derived. The calculating results show that the energy conversion efficiency is enhanced significantly by changing the mechanical damping efficiency and the stiffness ratio for the three-parameter mechanical component of the energy harvester. At the same time, the average power of the three-parameter vibration energy harvester, which delivered into the electrical load, is also improved. However, the influences of the electrical circuit component on the ambient energy harvesting can be omitted when keeping the designing parameters of the mechanical part constant.


Sign in / Sign up

Export Citation Format

Share Document