scholarly journals Auction-Based Secondary Relay Selection on Overlay Spectrum Sharing in Hybrid Satellite–Terrestrial Sensor Networks

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5039
Author(s):  
Xiaokai Zhang ◽  
Bangning Zhang ◽  
Kang An ◽  
Zhuyun Chen ◽  
Daoxing Guo

In this paper, we investigate the auction-based secondary relay selection on overlay spectrum sharing in hybrid satellite–terrestrial sensor networks (HSTSNs), where both the decode-and-forward (DF) and amplify-and-forward (AF) relay protocols are analyzed based on time division multiple access (TDMA). As both the primary and secondary networks are rational, honest but with incomplete network information, they prefer to obtain maximum possibility payoffs by the cooperation between the primary and secondary networks, and the competition among secondary networks. Hence, Vickery auction is introduced to achieve the effective and efficient secondary relay selection by distinct sub-time slot allocation for one shot in terms of a distributed manner. Finally, numerical simulations are provided to validate the effectiveness of the auction mechanism on cooperative spectrum sharing in HSTSNs for secondary relay selection. Besides, the effect of key factors on the performance of the auction mechanism are analyzed in details.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tran Trung Duy ◽  
Pham Thi Dan Ngoc ◽  
Phuong T. Tran

In this paper, we propose and evaluate performance of multihop multipath underlay cognitive radio networks. In a primary network, an uplink nonorthogonal multiple access method is employed to allow primary transmitters to simultaneously transmit their data to a primary receiver. Using an underlay spectrum-sharing method, secondary source and secondary relays must adjust their transmit power to guarantee quality of service of the primary network. Under the limited transmit power, cochannel interference from the primary transmitters, and hardware noises caused by impairments, we propose best-path selection methods to improve the end-to-end performance for the secondary network. Moreover, both multihop decode-and-forward and amplify-and-forward relaying protocols are considered in this paper. We derive expressions of outage probability for the primary and secondary networks and propose an efficient method to calculate the transmit power of the secondary transmitters. Then, computer simulations employing the Monte-Carlo approach are realized to validate the derivations.


2020 ◽  
Vol 10 (12) ◽  
pp. 4374
Author(s):  
Seung-Hwan Kim ◽  
Jae-Woo Kim ◽  
Dong-Seong Kim

In this paper, the eight schemes for aircraft wireless sensor networks are investigated, which are single-hop array beamforming schemes (including analog beamforming (ABF), and digital beamforming (DBF)), non-cooperative schemes (including single-hop and multi-hop schemes), cooperative schemes (including amplify and forward (AF), decode and forward (DF)), and incremental cooperative schemes (incremental decode and forward (IDF), and incremental amplify and forward (IAF)). To set up the aircraft wireless communication environment, we design the aircraft channel model by referring to the experimental parameters of the ITU (International Telecommunication Union)-R M.2283, which is composed of path loss, shadowing fading, and multi-path fading channel responses. To evaluate the performance, the conditions energy consumption and throughput analysis are performed. Through simulation results, the incremental cooperative scheme outperformed by 66.8% better at spectral efficiency 2 than the DBF scheme in terms of the energy consumption metric. Whereas, in terms of throughput metric, overall SNR (signal-to-noise ratio) ranged from −20 to 30 dB the beamforming scheme had the best performance in which the beamforming scheme at SNR 0 dB achieved 85.4% better than the multi-hop scheme. Finally, in terms of normalized throughput metric in low SNR range between −20 and 1 dB the ABF scheme had the best performance over the others in which the ABF at SNR 0 dB achieved 75.4% better than the multi-hop scheme. Whereas, in high SNR range between 2 and 30 dB the IDF scheme had the best performance in which the IDF at SNR 10 dB achieved 62.2% better than the multi-hop scheme.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 937
Author(s):  
Sangku Lee ◽  
Janghyuk Youn ◽  
Bang Chul Jung

For the next generation of manufacturing, the industrial internet of things (IoT) has been considered as a key technology that enables smart factories, in which sensors transfer measured data, actuators are controlled, and systems are connected wirelessly. In particular, the wireless sensor network (WSN) needs to operate with low cost, low power (energy), and narrow spectrum, which are the most technical challenges for industrial IoT networks. In general, a relay-assisted communication network has been known to overcome scarce energy problems, and a spectrum-sharing technique has been considered as a promising technique for the radio spectrum shortage problem. In this paper, we propose a phase steering based hybrid cooperative relaying (PSHCR) technique for the generic relay-assisted spectrum-shared WSN, which consists of a secondary transmitter, multiple secondary relays (SRs), a secondary access point, and multiple primary access points. Basically, SRs in the proposed PSHCR technique operate with decode-and-forward (DF) relaying protocol, but it does not abandon the SRs that failed in decoding at the first hop. Instead, the SRs operate with amplify-and-forward (AF) protocol when they failed in decoding at the first hop. Furthermore, the SRs (regardless of operating with AF or DF protocol) that satisfy interference constraints to the primary network are allowed to transmit a signal to the secondary access point at the second hop. Note that phase distortion is compensated through phase steering operation at each relay node before second-hop transmission, and thus all relay nodes can operate in a fully distributed manner. Finally, we validate that the proposed PSHCR technique significantly outperforms the existing best single relay selection (BSR) technique and cooperative phase steering (CPS) technique in terms of outage performance via extensive computer simulations.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4783
Author(s):  
Farnaz Khodakhah ◽  
Aamir Mahmood ◽  
Patrik Österberg ◽  
Mikael Gidlund

The increasing proliferation of Internet-of-things (IoT) networks in a given space requires exploring various communication solutions (e.g., cooperative relaying, non-orthogonal multiple access, spectrum sharing) jointly to increase the performance of coexisting IoT systems. However, the design complexity of such a system increases, especially under the constraints of performance targets. In this respect, this paper studies multiple-access enabled relaying by a lower-priority secondary system, which cooperatively relays the incoming information to the primary users and simultaneously transmits its own data. We consider that the direct link between the primary transmitter–receiver pair uses orthogonal multiple access in the first phase. In the second phase, a secondary transmitter adopts a relaying strategy to support the direct link while it uses non-orthogonal multiple access (NOMA) to serve the secondary receiver. As a relaying scheme, we propose a piece-wise and forward (PF) relay protocol, which, depending on the absolute value of the received primary signal, acts similar to decode-and-forward (DF) and amplify-and-forward (AF) schemes in high and low signal-to-noise ratio (SNR), respectively. By doing so, PF achieves the best of these two relaying protocols using the adaptive threshold according to the transmitter-relay channel condition. Under PF-NOMA, first, we find the achievable rate region for primary and secondary receivers, and then we formulate an optimization problem to derive the optimal PF-NOMA time and power fraction that maximize the secondary rate subject to reliability constraints on both the primary and the secondary links. Our simulation results and analysis show that the PF-NOMA outperforms DF-NOMA and AF-NOMA-based relaying techniques in terms of achievable rate regions and rate-guaranteed relay locations.


2021 ◽  
Author(s):  
Sutanu Ghosh ◽  
Tamaghna Acharya ◽  
Santi P. Maity

<div>This paper reports a relative performance analysis of decode-and-forward (DF) and amplify-and-forward (AF) relaying in a multi-antenna cooperative cognitive radio network (CCRN) that supports device-to-device (D2D) communications using spectrum sharing technique in cellular network. In this work, cellular system is considered as primary and internet of things devices (IoDs), engaged in D2D communications, are considered as secondary system. The devices access the licensed spectrum by means of the cooperation in two-way primary communications. Furthermore, IoDs are energized through the harvesting of energy from radio frequency (RF) signals, using simultaneous wireless information and power transfer (SWIPT) protocol. Closed form expressions of the outage probability for both cellular and D2D communications are derived and the impact of various design parameters for both AF and DF relaying techniques are studied. Based on the simulation results, it is found that the proposed spectrum sharing protocol, for both DF relaying and AF relaying schemes, outperform a similar network architecture in terms of spectrum efficiency. It is also observed that the performance of the proposed system using DF relaying is ~168% better compared to AF relaying scheme in term of peak energy efficiency at same transmit power.</div>


2021 ◽  
Author(s):  
Wided Hadj Alouane

Abstract In this paper, we investigate physical layer security of multi-relay non-orthogonal multiple access (NOMA) networks with partial relay selection considering decode-and-forward (DF) and amplify-and-forward (AF) protocols. We propose a partial relay scheme aiming to select the best relay based on the highest signal-to-noise-ratio (SNR) of the first link. We derive new exact and asymptotic expressions for strictly positive secrecy capacity (SPSC) and secrecy outage probability (SOP) considering Rayleigh fading channels. Numerical results demonstrate that AF and DF provide almost a similar secrecy performance. Moreover, they prove that partial relay selection improves SPSC and reduces SOP when the relay-cluster is closer to the legitimate receiver.


Sign in / Sign up

Export Citation Format

Share Document