scholarly journals Ultra-Sensitive Flexible Pressure Sensor Based on Microstructured Electrode

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 371 ◽  
Author(s):  
Mengmeng Li ◽  
Jiaming Liang ◽  
Xudong Wang ◽  
Min Zhang

Flexible pressure sensors with a high sensitivity in the lower zone of a subtle-pressure regime has shown great potential in the fields of electronic skin, human–computer interaction, wearable devices, intelligent prosthesis, and medical health. Adding microstructures on the dielectric layer on a capacitive pressure sensor has become a common and effective approach to enhance the performance of flexible pressure sensors. Here, we propose a method to further dramatically increase the sensitivity by adding elastic pyramidal microstructures on one side of the electrode and using a thin layer of a dielectric in a capacitive sensor. The sensitivity of the proposed device has been improved from 3.1 to 70.6 kPa−1 compared to capacitive sensors having pyramidal microstructures in the same dimension on the dielectric layer. Moreover, a detection limit of 1 Pa was achieved. The finite element analysis performed based on electromechanical sequential coupling simulation for hyperelastic materials indicates that the microstructures on electrode are critical to achieve high sensitivity. The influence of the duty ratio of the micro-pyramids on the sensitivity of the sensor is analyzed by both simulation and experiment. The durability and robustness of the device was also demonstrated by pressure testing for 2000 cycles.

Author(s):  
Jing Wang ◽  
Longwei Li ◽  
Lanshuang Zhang ◽  
Panpan Zhang ◽  
Xiong Pu

Abstract Highly sensitive soft sensors play key roles in flexible electronics, which therefore have attracted much attention in recent years. Herein, we report a flexible capacitive pressure sensor with high sensitivity by using engineered micro-patterned porous polydimethylsiloxane (PDMS) dielectric layer through an environmental-friendly fabrication procedure. The porous structure is formed by evaporation of emulsified water droplets during PDMS curing process, while the micro-patterned structure is obtained via molding on sandpaper. Impressively, this structure renders the capacitive sensor with a high sensitivity up to 143.5 MPa-1 at the pressure range of 0.068~150 kPa and excellent anti-fatigue performance over 20,000 cycles. Meanwhile, the sensor can distinguish different motions of the same person or different people doing the same action. Our work illustrates the promising application prospects of this flexible pressure sensor for the security field or human motion monitoring area.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ruzhan Qin ◽  
Mingjun Hu ◽  
Xin Li ◽  
Te Liang ◽  
Haoyi Tan ◽  
...  

AbstractThe development of flexible capacitive pressure sensors has wide application prospects in the fields of electronic skin and intelligent wearable electronic devices, but it is still a great challenge to fabricate capacitive sensors with high sensitivity. Few reports have considered the use of interdigital electrode structures to improve the sensitivity of capacitive pressure sensors. In this work, a new strategy for the fabrication of a high-performance capacitive flexible pressure sensor based on MXene/polyvinylpyrrolidone (PVP) by an interdigital electrode is reported. By increasing the number of interdigital electrodes and selecting the appropriate dielectric layer, the sensitivity of the capacitive sensor can be improved. The capacitive sensor based on MXene/PVP here has a high sensitivity (~1.25 kPa−1), low detection limit (~0.6 Pa), wide sensing range (up to 294 kPa), fast response and recovery times (~30/15 ms) and mechanical stability of 10000 cycles. The presented sensor here can be used for various pressure detection applications, such as finger pressing, wrist pulse measuring, breathing, swallowing and speech recognition. This work provides a new method of using interdigital electrodes to fabricate a highly sensitive capacitive sensor with very promising application prospects in flexible sensors and wearable electronics.


2020 ◽  
Vol 8 (33) ◽  
pp. 11468-11476
Author(s):  
Wei Li ◽  
Xin Jin ◽  
Yide Zheng ◽  
Xudong Chang ◽  
Wenyu Wang ◽  
...  

Capacitive sensor combining highly porous PDMS and rough polypyrrole electrodes improves the device range and sensitivity.


Author(s):  
Rongliang Zheng ◽  
Youyuan Wang ◽  
Zhanxi Zhang ◽  
Yanfang Zhang ◽  
Jinzhan Liu

Abstract Recently, flexible pressure sensors have attracted considerable interest in electronic skins, wearable devices, intelligent robots and biomedical diagnostics. However, the design of high sensitivity flexible pressure sensors often relies on expensive materials and complex process technology, which greatly limit their popularity and applications. Even worse, chemical-based sensors are poorly biocompatible and harmful to the environment. Here, we developed a flexible capacitive pressure sensor based on reduced graphene oxide (rGO) cotton fiber by a simple and low-cost preparation process. The environmentally friendly sensor exhibited a comprehensive performance with not only ultra-high sensitivity (up to 15.84 kPa-1) and a broad sensing range (0-500 kPa), but also excellent repeatability (over 400 cycles), low hysteresis (≤11.6%), low detection limit (<0.1 kPa) and wide frequency availability (sensitivity from 19.71 kPa-1 to 11.24 kPa-1, frequency from 100 Hz to 10 kHz). Based on its superior performance, the proposed sensor can detect various external stimuli (vertical stress, bending and airflow) and has been successfully applied for facial expression recognition, breathing detection, joint movement and walking detection, showing great potential for application in artificial electronic skin and wearable healthcare devices.


2016 ◽  
Vol 5 (1) ◽  
pp. 95-112 ◽  
Author(s):  
Ali E. Kubba ◽  
Ahmed Hasson ◽  
Ammar I. Kubba ◽  
Gregory Hall

Abstract. Measuring air pressure using a capacitive pressure sensor is a robust and precise technique. In addition, a system that employs such transducers lies within the low power consumption applications such as wireless sensor nodes. In this article a high sensitivity with an elliptical diaphragm capacitive pressure sensor is proposed. This design was compared with a circular diaphragm in terms of thermal stresses and pressure and temperature sensitivity. The proposed sensor is targeted for tyre pressure monitoring system application. Altering the overlapping area between the capacitor plates by decreasing the effective capacitance area to improve the overall sensitivity of the sensor (ΔC ∕ C), temperature sensitivity, and built-up stresses is also examined in this article. Theoretical analysis and finite element analysis (FEA) were employed to study pressure and temperature effects on the behaviour of the proposed capacitive pressure sensor. A MEMS (micro electro-mechanical systems) manufacturing processing plan for the proposed capacitive sensor is presented. An extra-low power short-range wireless read-out circuit suited for energy harvesting purposes is presented in this article. The developed read-out circuitry was tested in terms of sensitivity and transmission range.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 715 ◽  
Author(s):  
Zhenxin Guo ◽  
Lixin Mo ◽  
Yu Ding ◽  
Qingqing Zhang ◽  
Xiangyou Meng ◽  
...  

Flexible pressure sensors have attracted tremendous attention from researchers for their widely applications in tactile artificial intelligence, electric skin, disease diagnosis, and healthcare monitoring. Obtaining flexible pressure sensors with high sensitivity in a low cost and convenient way remains a huge challenge. In this paper, the composite dielectric layer based on the mixture of carbon nanotubes (CNTs) with different aspect ratios and polydimethylsiloxane (PDMS) was employed in flexible capacitive pressure sensor to increase its sensitivity. In addition, the screen printing instead of traditional etching based methods was used to prepare the electrodes array of the sensor. The results showed that the aspect ratio and weight fraction of the CNTs play an important role in improving the sensitivity of the printed capacitive pressure sensor. The prepared capacitive sensor with the CNTs/PDMS composite dielectric layer demonstrated a maximum sensitivity of 2.9 kPa−1 in the pressure range of 0–450 Pa, by using the CNTs with an aspect ratio of 1250–3750 and the weight fraction of 3.75%. The mechanism study revealed that the increase of the sensitivity of the pressure sensor should be attributed to the relative permittivity increase of the composite dielectric layer under pressure. Meanwhile, the printed 3 × 3 and 10 × 10 sensor arrays showed excellent spatial resolution and uniformity when they were applied to measure the pressure distribution. For further applications, the flexible pressure sensor was integrated on an adhesive bandage to detect the finger bending, as well as used to create Morse code by knocking the sensor to change their capacitance curves. The printed and flexible pressure sensor in this study might be a good candidate for the development of tactile artificial intelligence, intelligent medical diagnosis systems and wearable electronics.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1412 ◽  
Author(s):  
Young Jung ◽  
Wookjin Lee ◽  
Kyungkuk Jung ◽  
Byunggeon Park ◽  
Jinhyoung Park ◽  
...  

In recent times, polymer-based flexible pressure sensors have been attracting a lot of attention because of their various applications. A highly sensitive and flexible sensor is suggested, capable of being attached to the human body, based on a three-dimensional dielectric elastomeric structure of polydimethylsiloxane (PDMS) and microsphere composite. This sensor has maximal porosity due to macropores created by sacrificial layer grains and micropores generated by microspheres pre-mixed with PDMS, allowing it to operate at a wider pressure range (~150 kPa) while maintaining a sensitivity (of 0.124 kPa−1 in a range of 0~15 kPa) better than in previous studies. The maximized pores can cause deformation in the structure, allowing for the detection of small changes in pressure. In addition to exhibiting a fast rise time (~167 ms) and fall time (~117 ms), as well as excellent reproducibility, the fabricated pressure sensor exhibits reliability in its response to repeated mechanical stimuli (2.5 kPa, 1000 cycles). As an application, we develop a wearable device for monitoring repeated tiny motions, such as the pulse on the human neck and swallowing at the Adam’s apple. This sensory device is also used to detect movements in the index finger and to monitor an insole system in real-time.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3465
Author(s):  
Jianli Cui ◽  
Xueli Nan ◽  
Guirong Shao ◽  
Huixia Sun

Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human–machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa−1) and possesses an outstanding permanence over 4,000 cycles. Furthermore, a 16-pixel wireless sensor system was designed and a series of applications have been demonstrated. Its potential applications in the visualizing pressure distribution and an example of human–machine communication were also demonstrated.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanzheng Wu ◽  
Siming Li ◽  
Jiayu Hu ◽  
Manchen Dong ◽  
Ke Dong ◽  
...  

Purpose This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of high sensitivity capacitive pressure sensor was prepared by overlaying carbon fibers (CFs) on the surfaces of the thermoplastic elastomer (TPE), the TPE with high elasticity is a dielectric elastomer for the sensor and the CFs with excellent electrical conductivity were designed as the conductor. Design/methodology/approach Due to the excellent mechanical properties and electrical conductivity of CFs, it was designed as the conductor layer for the TPE/CFs capacitive pressure sensor via laminating CFs on the surfaces of the columnar TPE. Then, a ‘#' type structure of the capacitive pressure sensor was designed and fabricated. Findings The ‘#' type of capacitive pressure sensor of TPE/CFs composite was obtained in high sensitivity with a gauge factor of 2.77. Furthermore, the change of gauge factor values of the sensor under 10 per cent of applied strains was repeated for 1,000 cycles, indicating its outstanding sensing stability. Moreover, the ‘#' type capacitive pressure sensor of TPE/CFs was consisted of several capacitor arrays via laminating CFs, which could detect the distribution of pressure. Research limitations/implications The TPE/CFs capacitive pressure sensor was easily fabricated with high sensitivity and quick responsiveness, which is desirably applied in wearable electronics, robots, medical devices, etc. Originality/value The outcome of this study will help to fabricate capacitive pressure sensors with high sensitivity and outstanding sensing stability.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 442
Author(s):  
Kyobin Keum ◽  
Jae Sang Heo ◽  
Jimi Eom ◽  
Keon Woo Lee ◽  
Sung Kyu Park ◽  
...  

Textile-based pressure sensors have garnered considerable interest in electronic textiles due to their diverse applications, including human–machine interface and healthcare monitoring systems. We studied a textile-based capacitive pressure sensor array using a poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)/ionic liquid (IL) composite film. By constructing a capacitor structure with Ag-plated conductive fiber electrodes that are embedded in fabrics, a capacitive pressure sensor showing high sensitivity, good operation stability, and a wide sensing range could be created. By optimizing the PVDF-HFP:IL ratio (6.5:3.5), the fabricated textile pressure sensors showed sensitivity of 9.51 kPa−1 and 0.69 kPa−1 in the pressure ranges of 0–20 kPa and 20–100 kPa, respectively. The pressure-dependent capacitance variation in our device was explained based on the change in the contact-area formed between the multi-filament fiber electrodes and the PVDF-HFP/IL film. To demonstrate the applicability and scalability of the sensor device, a 3 × 3 pressure sensor array was fabricated. Due to its matrix-type array structure and capacitive sensing mechanism, multi-point detection was possible, and the different positions and the weights of the objects could be identified.


Sign in / Sign up

Export Citation Format

Share Document