scholarly journals CuO-Ga2O3 Thin Films as a Gas-Sensitive Material for Acetone Detection

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3142 ◽  
Author(s):  
Katarzyna Dyndal ◽  
Arkadiusz Zarzycki ◽  
Wojciech Andrysiewicz ◽  
Dominik Grochala ◽  
Konstanty Marszalek ◽  
...  

The p-n heterostructures of CuO-Ga2O3 obtained by magnetron sputtering technology in a fully reactive mode (deposition in pure oxygen) were tested under exposure to low acetone concentrations. After deposition, the films were annealed at previously confirmed conditions (400 °C/4 h/synthetic air) and further investigated by utilization of X-ray diffraction (XRD), X-ray reflectivity (XRR), energy-dispersive X-ray spectroscopy (EDS). The gas-sensing behavior was tested in the air/acetone atmosphere in the range of 0.1–1.25 ppm, as well as at various relative humidity (RH) levels (10–85%). The highest responses were obtained for samples based on the CuO-Ga2O3 (4% at. Ga).

Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2015 ◽  
Vol 833 ◽  
pp. 127-133
Author(s):  
Jie Yu ◽  
Jie Xing ◽  
Xiu Hua Chen ◽  
Wen Hui Ma ◽  
Rui Li ◽  
...  

La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte thin films were fabricated on La0.7Sr0.3Cr0.5Mn0.5O2.75 (LSCM) porous anode substrates by Radio Frequency (RF) magnetron sputtering method. The compatibility between LSGM and LSCM was examined. Microstructures of LSGM thin films fabricated were observed by scanning electron microscope (SEM). The effect of substrate temperature on LSGM thin films was clarified by X-ray Diffraction (XRD). Deposition rate increases firstly at the range of 50°C~150°C, and then decreases at the range of 150°C ~300°C. After annealing, perovskite structure with the same growth orientation forms at different substrate temperature. Crystallite size decreases at first, to the minimum point at 150°C, then increases as substrate temperature rises.


2011 ◽  
Vol 239-242 ◽  
pp. 2752-2755
Author(s):  
Fan Ye ◽  
Xing Min Cai ◽  
Fu Ping Dai ◽  
Dong Ping Zhang ◽  
Ping Fan ◽  
...  

Transparent conductive Cu-In-O thin films were deposited by reactive DC magnetron sputtering. Two types of targets were used. The first was In target covered with a fan-shaped Cu plate of the same radius and the second was Cu target on which six In grains of 1.5mm was placed with equal distance between each other. The samples were characterized with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/VIS spectrophotometer, four-probe measurement etc. SEM shows that the surfaces of all the samples are very smooth. EDX shows that the samples contain Cu, In as well as O, and different targets result in different atomic ratios of Cu to In. A diffraction peak related to rhombohedra-centered In2O3(012) is observed in the XRD spectra of all the samples. For both the two targets, the transmittance decreases with the increase of O2flow rates. The direct optical band gap of all the samples is also estimated according to the transmittance curve. For both the two targets, different O2flow rates result in different sheet resistances and conductivities. The target of Cu on In shows more controllability in the composition and properties of Cu-In-O films.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


2003 ◽  
Vol 17 (04n06) ◽  
pp. 848-854 ◽  
Author(s):  
A. CHIODONI ◽  
E. MEZZETTI ◽  
D. BOTTA ◽  
L. GOZZELINO ◽  
B. MINETTI ◽  
...  

In the framework of a research aimed to superconductor/semiconductor integrated electronics, we have grown a-axis oriented YBa 2 Cu 3 O 7-δ (YBCO) thin films on silicon (100) substrates with (111) oriented insulating buffer layers of cerium dioxide ( CeO 2), using magnetron sputtering deposition techniques. The properties of the cerium dioxide layer have been preliminary optimized by means of several layout and by monitoring the growing procedures through X-ray diffraction, AFM and TEM techniques. The lattice matching between CeO 2 and YBCO resulted to be worsened by an amorphous thin SiO 2 layer at the Si/CeO 2 interface, that decouples the buffer orientation from the seed orientation. However, it was possible to grow a relatively thick, optimally textured layer of CeO 2 without spurious orientations. The YBCO films deposited on top of this layer result preferentially a-axis oriented. The transition widths are very large, jet well controllable and reproducible. Some technological applications can be already envisaged.


2011 ◽  
Vol 217-218 ◽  
pp. 1743-1746
Author(s):  
Xing Long Guo

TiO2 with 20nm in diameter have been prepared by using magnetron sputtering technique. The structure of these powers was determined by X-ray diffraction experiments. The average grain size and particle size in these powers were measured by the line profile analysis method of X-ray diffraction patterns and by scan electron microscopy, respectively. The thin films were investigated by using XRD, SEM measurements.


2017 ◽  
Vol 268 ◽  
pp. 229-233
Author(s):  
A.R. Nurhamizah ◽  
Zuhairi Ibrahim ◽  
Rosnita Muhammad ◽  
Yussof Wahab ◽  
Samsudi Sakrani

This research aims to study the growth and the effect of annealing temperature on the structural properties of Platinum/YSZ/Platinum thin film. The thin films were prepared by RF and DC magnetron sputtering method utilized platinum as electrodes (anode and cathode) and YSZ as electrolyte. Two temperatures of annealing (400 and 600 °C) were conducted onto Platinum/YSZ/Platinum thin film for comparison in this study. Crystalline phase, microstructure and thickness of thin films were evaluated using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) technique. Results show that Pt/YSZ/Pt thin film without post-annealing gives a better morphology and crystal phase.


1995 ◽  
Vol 73 (1-2) ◽  
pp. 35-37
Author(s):  
J. Murdoch ◽  
F. S. Razavi ◽  
J. A. Moore

Using magnetron sputtering techniques, several thin films of superconducting BiPbSrCaCuO were fabricated by varying the distance between the substrate (single crystal of MgO with polished (100) plane) and the targets. During the deposition the gas pressure was kept constant at 0.3 mbar (1 mbar = 0.1 kPa) and the substrate temperature was kept at 700 °C. An energy-dispersive X-ray fluorescence was designed using a radioisotope source with a secondary target and a Si(Li) X-ray spectrometer and it was used to measure the atomic composition of the film quantitatively. It was found that the Ca concentration relative to Sr increases linearly as the distance between the substrate and the targets increases. However, both Cu and Bi show a more complex variation of concentration with distance. The X-ray diffraction results also indicated that the films are grown epitaxially along the C axis, which showed a semiconducting behaviour with TC,zero below 60 K.


2019 ◽  
Vol 27 (08) ◽  
pp. 1950188
Author(s):  
A. ALKHAWWAM ◽  
B. ABDALLAH ◽  
A. K. JAZMATI ◽  
M. TOOTANJI ◽  
F. LAHLAH

In this work, TiAlV thin films have been prepared on two different types of substrates: silicon and stainless steel (SS304) by two deposition methods: Pulsed Laser Deposition (PLD) and DC magnetron sputtering. Different techniques have been employed in order to characterize film properties such as: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), microhardness and corrosion test. EDX analysis showed that the deposited films are slightly different from that of the target material Ti6Al4V alloy. The measured microhardness values are about 11.7[Formula: see text]GPa and 4.7[Formula: see text]GPa for films prepared by PLD and DC magnetron sputtering, respectively. Corrosion test indicated that the corrosion resistance of the two TiAlV films deposited on SS304 substrates in (0.9% NaCl) physiological normal saline medium was significantly improved compared with the SS304 substrates. These attractive results could permit applications of our films in the medical implants fabrication.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Savita Sharma ◽  
Monika Tomar ◽  
Nitin K. Puri ◽  
Vinay Gupta

Tungsten trioxide (WO3) thin films were deposited by Rf-magnetron sputtering onto Pt interdigital electrodes fabricated on corning glass substrates. NO2 gas sensing properties of the prepared WO3 thin films were investigated by incorporation of catalysts (Sn, Zn, and Pt) in the form of nanoclusters. The structural and optical properties of the deposited WO3 thin films have been studied by X-ray diffraction (XRD) and UV-Visible spectroscopy, respectively. The gas sensing characteristics of all the prepared sensor structures were studied towards 5 ppm of NO2 gas. The maximum sensing response of about 238 was observed for WO3 film having Sn catalyst at a comparatively lower operating temperature of 200°C. The possible sensing mechanism has been highlighted to support the obtained results.


Sign in / Sign up

Export Citation Format

Share Document