scholarly journals Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3333
Author(s):  
Wei Liu ◽  
Dawei Wu

This paper presents the development of a flexible piezoelectric micromachined ultrasonic transducer (PMUT) that can conform to flat, concave, and convex surfaces and work in air. The PMUT consists of an Ag-coated polyvinylidene fluoride (PVDF) film mounted onto a laser-manipulated polymer substrate. A low temperature (<100 °C) adhesive bonding technique is adopted in the fabrication process. Finite element analysis (FEA) is implemented to confirm the capability of predicting the resonant frequency of composite diaphragms and optimizing the device. The manufactured PMUT exhibits a center frequency of 198 kHz with a wide operational bandwidth. Its acoustic performance is demonstrated by transmitting and receiving ultrasound in air on curved surface. The conclusions from this study indicate the proposed PMUT has great potential in ultrasonic and wearable devices applications.

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 319 ◽  
Author(s):  
Mansoor Ahmad ◽  
Ayhan Bozkurt ◽  
Omid Farhanieh

This article presents a new wafer-bonding fabrication technique for Capacitive Micromachined Ultrasonic Transducers (CMUTs) using polymethyl methacrylate (PMMA). The PMMA-based single-mask and single-dry-etch step-bonding device is much simpler, and reduces process steps and cost as compared to other wafer-bonding methods and sacrificial-layer processes. A low-temperature (< 180 ∘ C ) bonding process was carried out in a purpose-built bonding tool to minimize the involvement of expensive laboratory equipment. A single-element CMUT comprising 16 cells of 2.5 mm radius and 800 nm cavity was fabricated. The center frequency of the device was set to 200 kHz for underwater communication purposes. Characterization of the device was carried out in immersion, and results were subsequently validated with data from Finite Element Analysis (FEA). Results show the feasibility of the fabricated CMUTs as receivers for underwater applications.


2012 ◽  
Vol 503 ◽  
pp. 55-60 ◽  
Author(s):  
Yu Xin Li ◽  
De Yong Chen ◽  
Jun Bo Wang

This paper presents a method of low temperature wafer level adhesive bonding using non-photosensitive bisbenzocyclobutene (BCB) from Dow Co for resonant pressure sensor package. The bonding process is performed at the temperature below 250oC, with the pressure on the wafer 2-3 Bar in vacuum in a wafer bonding system. According to the bonding process, pre-bake time, pumping time, pressure placed on the sensor and the thickness of cross-linked layer are the most important factors. Experiments show that more than 95% of the area is successfully bonded, the hermeticity maintains well after thermal shock and long term tests, and the tensile strength of the fabricated bonds is up to 40MPa. The bonding technique was successfully tested in the fabrication process of resonant pressure sensor, and the results show that this bonding technique is a viable MEMS encapsulation technology for hermetically cavity sealing.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 609 ◽  
Author(s):  
Thanh Nguyen ◽  
Nguyen Truong ◽  
Nhat Bui ◽  
Van Nguyen ◽  
Giang Hoang ◽  
...  

The present study illustrates the design, fabrication, and evaluation of a novel multifocal point (MFP) transducer based on polyvinylidene fluoride (PVDF) film for high-frequency ultrasound application. The fabricated MFP surface was press-focused using a computer numerical control (CNC) machining tool-customized multi-spherical pattern object. The multi-spherical pattern has five spherical surfaces with equal area and connected continuously to have the same energy level at focal points. Center points of these spheres are distributed in a linear pattern with 1 mm distance between each two points. The radius of these spheres increases steadily from 10 mm to 13.86 mm. The designed MFP transducer had a center frequency of 50 MHz and a −6 dB bandwidth of 68%. The wire phantom test was conducted to study and demonstrate the advantages of this novel design. The obtained results for MFP transducer revealed a significant increase (4.3 mm) of total focal zone in the near-field and far-field area compared with 0.48 mm obtained using the conventional single focal point transducer. Hence, the proposed method is promising to fabricate MFP transducers for deeper imaging depth applications.


2010 ◽  
Vol 129-131 ◽  
pp. 411-415 ◽  
Author(s):  
Xiao Cong He

Adhesive bonding is a high-speed fastening technique which is suitable for joining advanced lightweight sheet materials that are dissimilar, coated and hard to weld. Major advances have been made in recent years in adhesive bonding technique. Latest literature relating to finite element analysis (FEA) of adhesively bonded single-lap joints (SLJs) is reviewed in this paper. The recent development in FEA of SLJs is described with particular reference to three major factors that influence the success of adhesive bonding technique: failure mechanism, environmental effects and mechanical behavior. The main FE methods used in FEA of SLJs are discussed and illustrated with brief case studies from the literature. Areas where further useful progress can be made are also identified.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5582
Author(s):  
Khairul Azman Ahmad ◽  
Mohamad Faizal Abd Rahman ◽  
Khairu Anuar Mohamed Zain ◽  
Muhammad Naim Haron ◽  
Asrulnizam Abd Manaf

In acoustic receiver design, the receiving sensitivity and bandwidth are two primary parameters that determine the performance of a device. The trade-off between sensitivity and bandwidth makes the design very challenging, meaning it needs to be fine-tuned to suit specific applications. The ability to design a PMUT with high receiving sensitivity and a wide bandwidth is crucial to allow a wide spectrum of transmitted frequencies to be efficiently received. This paper presents a novel structure involving a double flexural membrane with a fluidic backing layer based on an in-plane polarization mode to optimize both the receiving sensitivity and frequency bandwidth for medium-range underwater acoustic applications. In this structure, the membrane material and electrode configuration are optimized to produce good receiving sensitivity. Simultaneously, a fluidic backing layer is introduced into the double flexural membrane to increase the bandwidth. Several piezoelectric membrane materials and various electrode dimensions were simulated using finite element analysis (FEA) techniques to study the receiving performance of the proposed structure. The final structure was then fabricated based on the findings from the simulation work. The pulse–echo experimental method was used to characterize and verify the performance of the proposed device. The proposed structure was found to have an improved bandwidth of 56.6% with a receiving sensitivity of −1.8864 dB rel 1 V µPa. For the proposed device, the resonance frequency and center frequency were 600 and 662.5 kHz, respectively, indicating its suitability for the targeted frequency range.


Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Weibao Qiu ◽  
...  

Background:: Ultrasound is widely used in the applications of underwater imaging. Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate to the traditional piezoelectric ultrasonic transducer. In underwater ultrasound imaging, better resolutions can be achieved with a higher frequency ultrasound. Therefore, a CMUT array for high-frequency ultrasound imaging is proposed in this work. Methods:: Analytical methods are used to calculate the center frequency in water and the pull-in voltage for determining the operating point of CMUT. Finite element method model was developed to finalize the design parameters. The CMUT array was fabricated with a five-mask sacrificial release process. Results:: The CMUT array owned an immersed center frequency of 2.6 MHz with a 6 dB fractional bandwidth of 123 %. The pull-in voltage of the CMUT array was 85 V. An underwater imaging experiment was carried out with the target of three steel wires. Conclusion:: In this study, we have developed CMUT for high-frequency underwater imaging. The experiment showed that the CMUT can detect the steel wires with the diameter of 100 μm and the axial resolution was 0.582 mm, which is close to one wavelength of ultrasound in 2.6 MHz.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1459
Author(s):  
Varshitha Yashvanth ◽  
Sazzadur Chowdhury

This paper presents a novel technique to reduce acoustic crosstalk in capacitive micromachined ultrasonic transducer (CMUT) arrays. The technique involves fabricating a thin layer of diisocyanate enhanced silica aerogel on the top surface of a CMUT array. The silica aerogel layer introduces a highly nanoporous permeable layer to reduce the intensity of the Scholte wave at the CMUT-fluid interface. 3D finite element analysis (FEA) simulation in COMSOL shows that the developed technique can provide a 31.5% improvement in crosstalk reduction for the first neighboring element in a 7.5 MHz CMUT array. The average improvement of crosstalk level over the −6 dB fractional bandwidth was 22.1%, which is approximately 5 dB lower than that without an aerogel layer. The results are in excellent agreement with published experimental results to validate the efficacy of the new technique.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 585
Author(s):  
Ariel Ma ◽  
Jian Yu ◽  
William Uspal

Natural evaporation has recently come under consideration as a viable source of renewable energy. Demonstrations of the validity of the concept have been reported for devices incorporating carbon-based nanocomposite materials. In this study, we investigated the possibility of using polymer thin films to generate electricity from natural evaporation. We considered a polymeric system based on polyvinylidene fluoride (PVDF). Porous PVDF films were created by incorporating a variety of nanocomposite materials into the polymer structure through a simple mixing procedure. Three nanocomposite materials were considered: carbon nanotubes, graphene oxide, and silica. The evaporation-induced electricity generation was confirmed experimentally under various ambient conditions. Among the nanocomposite materials considered, mesoporous silica (SBA-15) was found to outperform the other two materials in terms of open-circuit voltage, and graphene oxide generated the highest short-circuit current. It was found that the nanocomposite material content in the PVDF film plays an important role: on the one hand, if particles are too few in number, the number of channels will be insufficient to support a strong capillary flow; on the other hand, an excessive number of particles will suppress the flow due to excessive water absorption underneath the surface. We show that the device can be modeled as a simple circuit powered by a current source with excellent agreement between the theoretical predictions and experimental data.


Sign in / Sign up

Export Citation Format

Share Document