Low Temperature Wafer Level Adhesive Bonding Using BCB for Resonant Pressure Sensor

2012 ◽  
Vol 503 ◽  
pp. 55-60 ◽  
Author(s):  
Yu Xin Li ◽  
De Yong Chen ◽  
Jun Bo Wang

This paper presents a method of low temperature wafer level adhesive bonding using non-photosensitive bisbenzocyclobutene (BCB) from Dow Co for resonant pressure sensor package. The bonding process is performed at the temperature below 250oC, with the pressure on the wafer 2-3 Bar in vacuum in a wafer bonding system. According to the bonding process, pre-bake time, pumping time, pressure placed on the sensor and the thickness of cross-linked layer are the most important factors. Experiments show that more than 95% of the area is successfully bonded, the hermeticity maintains well after thermal shock and long term tests, and the tensile strength of the fabricated bonds is up to 40MPa. The bonding technique was successfully tested in the fabrication process of resonant pressure sensor, and the results show that this bonding technique is a viable MEMS encapsulation technology for hermetically cavity sealing.

2011 ◽  
Vol 694 ◽  
pp. 896-900 ◽  
Author(s):  
Yu Xin Li ◽  
De Yong Chen ◽  
Jun Bo Wang

This paper presents a method of low temperature adhesive bonding and stress isolation for MEMS resonant pressure sensor hermetic packaging using non-photosensitive benzo-cyclo-butene (BCB) from Dow Co. According to the bonding process, pre-bake time, pumping time, pressure placed on the sensor and the thickness of crosslink layer are the most important factors. Stress isolation is designed to minimize thermal stresses to the resonant pressure sensor package. Experimental results show that this bonding process is a viable for MEMS resonant pressure sensor with the bonding temperature below 250°C, measured bonding strength more than 30MPa, the temperature drift less than 0.05%/°C in the range of -40°C to 70°C(10% of that without stress isolation), and the bonding strength maintains well after thermal treatments, handling, bench testing and implantations.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001221-001252 ◽  
Author(s):  
Kei Murayama ◽  
Mitsuhiro Aizawa ◽  
Mitsutoshi Higashi

The bonding technique for High density Flip Chip(F.C.) packages requires a low temperature and a low stress process to have high reliability of the micro joining ,especially that for sensor MEMS packages requires hermetic sealing so as to ensure their performance. The Transient Liquid Phase (TLP) bonding, that is a kind of diffusion bonding is a technique that connects the low melting point material such as Indium to the higher melting point metal such as Gold by the isothermal solidification and high-melting-point intermetallic compounds are formed. Therefore, it is a unique joining technique that can achieve not only the low temperature bonding and also the high temperature reliability. The Gold-Indium TLP bonding technique can join parts at 180 degree C and after bonding the melting point of the junction is shifted to more than 495 degree C, therefore itfs possible to apply the low temperature bonding lower than the general use as a lead free material such as a SAC and raise the melting point more than AuSn solder which is used for the high temperature reliability usage. Therefore, the heat stress caused by bonding process can be expected to be lowered. We examined wafer bonding and F.C bonding plus annealing technique by using electroplated Indium and Gold as a joint material. We confirmed that the shear strength obtained at the F.C. bonding plus anneal technique was equal with that of the wafer bonding process. Moreover, it was confirmed to ensure sufficient hermetic sealing in silicon cavity packages that had been bonded at 180 degree C. And the difference of the thermal stress that affect to the device by the bonding process was confirmed. In this paper, we report on various possible application of the TLP bonding.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 1-24
Author(s):  
Michael Gallagher ◽  
Jong-Uk Kim ◽  
Eric Huenger ◽  
Kai Zoschke ◽  
Christina Lopper ◽  
...  

3D stacking, one of the 3D integration technologies using through silicon vias (TSVs), is considered as a desirable 3D solution due to its cost effectiveness and matured technical background. For successful 3D stacking, precisely controlled bonding of the two substrates is necessary, so that various methods and materials have been developed over the last decade. Wafer bonding using polymeric adhesives has advantages. Surface roughness, which is critical in direct bonding and metal-to-metal bonding, is not a significant issue, as the organic adhesive can smooth out the unevenness during bonding process. Moreover, bonding of good quality can be obtained using relatively low bonding pressure and low bonding temperature. Benzocyclobutene (BCB) polymers have been commonly used as bonding adhesives due to their relatively low curing temperature (~250 °C), very low water uptake (<0.2%), excellent planarizing capability, and good affinity to Cu metal lines. In this study, we present wafer bonding with BCB at various conditions. In particular, bonding experiments are performed at low temperature range (180 °C ~ 210 °C), which results in partially cured state. In order to examine the effectiveness of the low temperature process, the mechanical (adhesion) strength and dimensional changes are measured after bonding, and compared with the values of the fully cured state. Two different BCB polymers, dry-etch type and photo type, are examined. Dry etch BCB is proper for full-area bonding, as it has low degree of cure and therefore less viscosity. Photo-BCB has advantages when a pattern (frame or via open) is to be structured on the film, since it is photoimageable (negative tone), and its moderate viscosity enables the film to sustain the patterns during the wafer bonding process. The effect of edge beads at the wafer rim area and the soft cure (before bonding) conditions on the bonding quality are also studied. Alan/Rey ok move from Flip Chip and Wafer Level Packaging 1-6-12.


2019 ◽  
Vol 2019 (NOR) ◽  
pp. 000012-000016
Author(s):  
Henri Ailas ◽  
Jaakko Saarilahti ◽  
Tuomas Pensala ◽  
Jyrki Kiihamäki

Abstract In this study, a low temperature wafer-level packaging process aimed for encapsulating MEMS mirrors was developed. The glass cap wafer used in the package has an antireflective (AR) coating that limits the maximum temperature of the bonding process to 250°C. Copper thermocompression was used as copper has a high self-diffusivity and the native oxidation on copper surfaces can be completely removed with combination of ex situ acetic acid wet-etch and in situ forming gas anneal. Making it suitable for a development of a low temperature bonding process. In this work, bonding on of sputtered and electrodeposited copper films was studied on temperatures ranging from 200°C to 300°C as well as the effect of pretreatment on bond strength. The study presents a successful thermocompression bonding process for sputtered Cu films at a low temperature of 200°C with high yield of 97 % after dicing. The bond strength was recorded to be 75 MPa, well above the MIL-STD-883E standard (METHOD 2019.5) rejection limit of 6.08 MPa. The high dicing yield and bond strength suggest that the thermocompression bonding could be possible even at temperatures below 200°C. However, the minimum bonding temperature was not yet determined in this study.


2008 ◽  
Vol 2008 ◽  
pp. 1-17 ◽  
Author(s):  
Hyundai Park ◽  
Alexander W. Fang ◽  
Di Liang ◽  
Ying-Hao Kuo ◽  
Hsu-Hao Chang ◽  
...  

This paper reviews the recent progress of hybrid silicon evanescent devices. The hybrid silicon evanescent device structure consists of III-V epitaxial layers transferred to silicon waveguides through a low-temperature wafer bonding process to achieve optical gain, absorption, and modulation efficiently on a silicon photonics platform. The low-temperature wafer bonding process enables fusion of two different material systems without degradation of material quality and is scalable to wafer-level bonding. Lasers, amplifiers, photodetectors, and modulators have been demonstrated with this hybrid structure and integration of these individual components for improved optical functionality is also presented. This approach provides a unique way to build photonic active devices on silicon and should allow application of silicon photonic integrated circuits to optical telecommunication and optical interconnects.


2009 ◽  
Vol 74 ◽  
pp. 183-186
Author(s):  
Lu Jun Zhang ◽  
Andre Bossche

This paper presents a method to fabricate the microfluidic devices with insulated electrodes on top and bottom sides of the channel. To form the channel containing vertically opposing electrodes, two processed substrates were bonded together with an SU-8 intermediate layer sandwiched in between. An adhesive bonding technique, at wafer level, with accurate alignment was developed. Instead of using wafer bonder, the bonding was conducted on a hotplate, which relieves the requirement on the process equipment to a great extent.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3333
Author(s):  
Wei Liu ◽  
Dawei Wu

This paper presents the development of a flexible piezoelectric micromachined ultrasonic transducer (PMUT) that can conform to flat, concave, and convex surfaces and work in air. The PMUT consists of an Ag-coated polyvinylidene fluoride (PVDF) film mounted onto a laser-manipulated polymer substrate. A low temperature (<100 °C) adhesive bonding technique is adopted in the fabrication process. Finite element analysis (FEA) is implemented to confirm the capability of predicting the resonant frequency of composite diaphragms and optimizing the device. The manufactured PMUT exhibits a center frequency of 198 kHz with a wide operational bandwidth. Its acoustic performance is demonstrated by transmitting and receiving ultrasound in air on curved surface. The conclusions from this study indicate the proposed PMUT has great potential in ultrasonic and wearable devices applications.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 001222-001254
Author(s):  
Kai Zoschke ◽  
J.-U. Kim ◽  
M. Wegner ◽  
M. Gallagher ◽  
R. Barr ◽  
...  

To enable advanced wafer level packaging approaches for devices like MEMS, image sensors or optical elements, wafer-to-wafer bonding processes using structured low temperature curable adhesives are required. A lot of Benzocyclobutene (BCB)-based wafer bonding works have been reported in the past showing a broad range of applications and good performance, but also some limitations such as long bond cycles and high cure temperature of 250 °C. In 2013 new process concepts were demonstrated [1], showing that wafer bond cycle time can be reduced to less than 10 min and a post bond batch cure at temperatures below 200 °C can be used to significantly shrink the overall cost of a BCB-based adhesive wafer bonding process. In order to create a patterned BCB bond layer, photo structuring of CYCLOTENE ® 4000 Resin is one solution. However, due to the decreased flow capability of that material after exposure, high bond forces and extended bonding times during wafer bonding as well as nearly flat surfaces with low topography are required for void-free bonding. To overcome these limitations, an increased material flow capability during wafer bonding is required. In this context non-photo sensitive CYCLOTENE ® 3000 Resin is suitable, since it has excellent flow capability in non-cured state. However, non-cured CYCLOTENE ® 3000 Resin cannot be structured with standard dry etching processes using a photo resist layer as mask. In order to enable patterned adhesive bonding based on CYCLOTENE ® 3000 Resin, alternative structuring methods have to be evaluated. One method was presented in [1] which is transfer printing of CYCLOTENE ® 3000 Resin from a help wafer to topography features of the device wafer. Although very good results were obtained, the method is restricted to applications with significant topography to enable the transfer printing. In this work we focus on a new structuring method for non-cured BCB layers formed from CYCLOTENE ® 3000 Resin. The layers were spin coated, baked and subsequently patterned using a 248 nm excimer laser stepper. The system features a 2.5× mask projection with a resulting exposure field of 6.5 × 6.5 mm2 and allows a direct ablation patterning of polymers. By using this method bond frame structures were patterned into 5 μm thick BCB layers at 200 mm silicon wafers. The wafers with the structured adhesive were bonded at 80 °C and 0.2 MPa for 5 minutes with 200 mm glass wafers. The bonded wafer stacks were subsequently post bond batch cured at 190 °C. Wafer dicing and shear tests of the bonded structures revealed excellent mechanical robustness of the BCB bond frames. The paper will review the new BCB wafer bond processes for supporting short cycle times with special focus on the new patterning approach by laser ablation. Process flow description as well as systematical analysis of pattern reproducibility of the new structuring method is part of the discussion.


Sign in / Sign up

Export Citation Format

Share Document