scholarly journals Implementation and Performance of a Deeply-Coupled GNSS Receiver with Low-Cost MEMS Inertial Sensors for Vehicle Urban Navigation

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3397 ◽  
Author(s):  
Xin Feng ◽  
Tisheng Zhang ◽  
Tao Lin ◽  
Hailiang Tang ◽  
Xiaoji Niu

In urban environments, Global Navigation Satellite Systems (GNSS) signals are frequently attenuated, blocked or reflected, which degrades the positioning accuracy of GNSS receivers significantly. To improve the performance of GNSS receiver for vehicle urban navigation, a GNSS/INS deeply-coupled software defined receiver (GIDCSR) with a low cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) ICM-20602 is presented, in which both GPS and BDS constellations are supported. Two key technologies, that is, adaptive open-close tracking loops and INS aided pseudo-range weight control algorithm, are applied in the GIDCSR to enhance the signal tracking continuity and positioning accuracy in urban areas. To assess the performance of the proposed deep couple solution, vehicle field tests were carried out in GNSS-challenged urban environments. With the adaptive open-close tracking loops, the deep couple output carrier phase in the open sky, and improved pseudo-range accuracy before and after GNSS signal blocked. Applying the INS aided pseudo-range weight control, the pseudo-range gross errors of the deep couple decreased caused by multipath. A popular GNSS/INS tightly-coupled vehicle navigation kit from u-blox company, M8U, was tested side by side as benchmark. The test results indicate that in the GNSS-challenged urban areas, the pseudo-range quality of GIDCSR is at least 25% better than that of M8U, and GIDCSR’s horizontal positioning results are at least 69% more accurate than M8U’s.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7265
Author(s):  
Zhitao Lyu ◽  
Yang Gao

High-precision positioning with low-cost global navigation satellite systems (GNSS) in urban environments remains a significant challenge due to the significant multipath effects, non-line-of-sight (NLOS) errors, as well as poor satellite visibility and geometry. A GNSS system is typically implemented with a least-square (LS) or a Kalman-filter (KF) estimator, and a proper weight scheme is vital for achieving reliable navigation solutions. The traditional weight schemes are based on the signal-in-space ranging errors (SISRE), elevation and C/N0 values, which would be less effective in urban environments since the observation quality cannot be fully manifested by those values. In this paper, we propose a new multi-feature support vector machine (SVM) signal classifier-based weight scheme for GNSS measurements to improve the kinematic GNSS positioning accuracy in urban environments. The proposed new weight scheme is based on the identification of important features in GNSS data in urban environments and intelligent classification of line-of-sight (LOS) and NLOS signals. To validate the performance of the newly proposed weight scheme, we have implemented it into a real-time single-frequency precise point positioning (SFPPP) system. The dynamic vehicle-based tests with a low-cost single-frequency u-blox M8T GNSS receiver demonstrate that the positioning accuracy using the new weight scheme outperforms the traditional C/N0 based weight model by 65.4% and 85.0% in the horizontal and up direction, and most position error spikes at overcrossing and short tunnels can be eliminated by the new weight scheme compared to the traditional method. It also surpasses the built-in satellite-based augmentation systems (SBAS) solutions of the u-blox M8T and is even better than the built-in real-time-kinematic (RTK) solutions of multi-frequency receivers like the u-blox F9P and Trimble BD982.


2020 ◽  
Vol 12 (19) ◽  
pp. 3178
Author(s):  
Jian Wang ◽  
Tianhe Xu ◽  
Wenfeng Nie ◽  
Guochang Xu

Reliable real-time kinematic (RTK) is crucially important for emerging global navigation satellite systems (GNSSs) applications, such as drones and unmanned vehicles. The performance of conventional single baseline RTK (SBRTK) with one reference station degrades greatly in dense, urban environments, due to signal blockage and multipath error. The increasing use of multiple reference stations for kinematic positioning can improve RTK positioning accuracy and availability in urban areas. This paper proposes a new algorithm for multi-baseline RTK (MBRTK) positioning based on the equivalence principle. The advantages of the solution are to keep observation independent and increase the redundancy to estimate the unknown parameters. The equivalent double-differenced (DD) observation equations for multiple reference stations are firstly developed through the equivalent transform. A modified Kalman filter with parameter constraints is proposed, as well as a partial ambiguity resolution (PAR) strategy is developed to determine an ambiguity subset. Finally, the static and kinematic experiments are carried out to validate the proposed algorithm. The results demonstrate that, compared with single global positioning system (GPS) and Beidou navigation system (BDS) RTK positioning, the GPS/BDS positioning for MBRTK can enhance the positioning accuracy with improvement by approximately (45%, 35%, and 27%) and (12%, 6%, and 19%) in the North (N), East (E), and Up (U) components, as well as the availability with improvement by about 33% and 10%, respectively. Moreover, the MBRTK model with two and three reference receivers can significantly increase the redundancy and provide smaller ambiguity dilution of precision (ADOP) values. Compared with the scheme-one and scheme-two for SBRTK, the MBRTK with multiple reference receivers have a positioning accuracy improvement by about (9%, 0%, and 6%) and (9%, 16%, and 16%) in N, E, and U components, as well as the availability improvement by approximately 10%. Therefore, compared with the conventional SBRTK, the MBRTK can enhance the strength of the kinematic positioning model as well as improve the positioning accuracy and availability.


Author(s):  
A. M. G. Tommaselli ◽  
M. B. Campos ◽  
L. F. Castanheiro ◽  
E. Honkavaara

Abstract. Low cost imaging and positioning sensors are opening new frontiers for applications in near real-time Photogrammetry. Omnidirectional cameras acquiring images with 360° coverage, when combined with information coming from GNSS (Global Navigation Satellite Systems) and IMU (Inertial Measurement Unit), can efficiently estimate orientation and object space structure. However, several challenges remain in the use of low-cost sensors and image observations acquired by sensors with non-perspective inner geometry. The accuracy of the measurement using low-cost sensors is affected by different sources of errors and sensor stability. Microelectromechanical systems (MEMS) present a large gap between predicted and actual accuracy. This work presents a study on the performance of an integrated sensor orientation approach to estimate sensor orientation and 3D sparse point cloud, using an incremental bundle adjustment strategy and data coming from a low-cost portable mobile terrestrial system composed by off-theshelf navigation systems and a poly-dioptric system (Ricoh Theta S). Experiments were performed in an outdoor area (sidewalk), achieving a trajectory positional accuracy of 0.33 m and a meter level 3D reconstruction.


2021 ◽  
pp. 1-19
Author(s):  
Ankit Jain ◽  
Steffen Schön

Abstract In urban areas, the Global Navigation Satellite System (GNSS) can lead to position errors of tens of meters due to signal obstruction and severe multipath effects. In cases of 3D-positioning, the vertical coordinate is estimated less accurately than are the horizontal coordinates. Multisensor systems can enhance navigation performance in terms of accuracy, availability, continuity and integrity. However, the addition of multiple sensors increases the system cost, and thereby the applicability to low-cost applications is limited. By using the concept of receiver clock modelling (RCM), the position estimation can be made more robust; the use of high-sensitivity (HS) GNSS receivers can improve the system availability and continuity. This paper investigates the integration of a low-cost HS GNSS receiver with an external clock in urban conditions; subsequently, the gain in the navigation performance is evaluated. GNSS kinematic data is recorded in an urban environment with multiple geodetic-grade and HS receivers. The external clock stability information is incorporated through the process noise matrix in a Kalman filter when estimating the position, velocity and time states. Results shows that the improvement in the precision of the height component and vertical velocity with both receivers is about 70% with RCM compared with the estimates obtained without applying RCM. Pertaining accuracy, the improvement in height with RCM is found to be about 70% and 50% with geodetic and HS receivers, respectively. In terms of availability, the HS receiver delivers an 100% output compared with a geodetic receiver, which provides an output 99⋅4% of the total experiment duration.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Pietro Catania ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giuseppe Morello ◽  
Santo Orlando ◽  
...  

Global Navigation Satellite Systems (GNSS) allow the determination of the 3D position of a point on the Earth’s surface by measuring the distance from the receiver antenna to the orbital position of at least four satellites. Selecting and buying a GNSS receiver, depending on farm needs, is the first step for implementing precision agriculture. The aim of this work is to compare the positioning accuracy of four GNSS receivers, different for technical features and working modes: L1/L2 frequency survey-grade Real-Time Kinematic (RTK)-capable Stonex S7-G (S7); L1 frequency RTK-capable Stonex S5 (S5); L1 frequency Thales MobileMapper Pro (TMMP); low-cost L1 frequency Quanum GPS Logger V2 (QLV2). In order to evaluate the positioning accuracy of these receivers, i.e., the distance of the determined points from a reference trajectory, different tests, distinguished by the use or not of Real-Time Kinematic (RTK) differential correction data and/or an external antenna, were carried out. The results show that all satellite receivers tested carried out with the external antenna had an improvement in positioning accuracy. The Thales MobileMapper Pro satellite receiver showed the worst positioning accuracy. The low-cost Quanum GPS Logger V2 receiver surprisingly showed an average positioning error of only 0.550 m. The positioning accuracy of the above-mentioned receiver was slightly worse than that obtained using Stonex S7-G without the external antenna and differential correction (maximum positioning error 0.749 m). However, this accuracy was even better than that recorded using Stonex S5 without differential correction, both with and without the external antenna (average positioning error of 0.962 m and 1.368 m).


2016 ◽  
Vol 28 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Shodai Kato ◽  
◽  
Mitsunori Kitamura ◽  
Taro Suzuki ◽  
Yoshiharu Amano ◽  
...  

[abstFig src='/00280001/03.jpg' width=""300"" text='NLOS satellites detection method' ]In recent years, global navigation satellite systems (GNSSs) have been widely used in intelligent transport systems (ITSs), and many countries have been rapidly improving the infrastructure of their satellite positioning systems. However, there is a serious problem involving the use of kinematic GNSS positioning in urban environments, which stems from significant positioning errors introduced by non-line-of-sight (NLOS) satellites blocked by obstacles. Therefore, we propose the method for positioning based on NLOS satellites detection using a fish-eye camera. In general, it is difficult to robustly extract an obstacle region from the fish-eye image because the image is affected by cloud cover, illumination conditions, and weather conditions. We extract the obstacle region from the image by tracking image feature points in sequential images. Because the obstacle region on the image moves larger than the sky region, the obstacle region can be determined by performing image segmentation and by using feature point tracking techniques. Finally, NLOS satellites can be identified using the obstacle region on the image. The evaluation results confirm the GNSS positioning accuracy without the NLOS satellites was improved compared with using all observed satellites, and confirm the effectiveness of the proposed technique and the feasibility of implementing its highly accurate positioning capabilities in urban environments.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2954 ◽  
Author(s):  
Ralf Ziebold ◽  
Daniel Medina ◽  
Michailas Romanovas ◽  
Christoph Lass ◽  
Stefan Gewies

Currently Global Navigation Satellite Systems (GNSSs) are the primary source for the determination of absolute position, navigation, and time (PNT) for merchant vessel navigation. Nevertheless, the performance of GNSSs can strongly degrade due to space weather events, jamming, and spoofing. Especially the increasing availability and adoption of low cost jammers lead to the question of how a continuous provision of PNT data can be realized in the vicinity of these devices. In general, three possible solutions for that challenge can be seen: (i) a jamming-resistant GNSS receiver; (ii) the usage of a terrestrial backup system; or (iii) the integration of GNSS with other onboard navigation sensors such as a speed log, a gyrocompass, and inertial sensors (inertial measurement unit—IMU). The present paper focuses on the third option by augmenting a classical IMU/GNSS sensor fusion scheme with a Doppler velocity log. Although the benefits of integrated IMU/GNSS navigation system have been already demonstrated for marine applications, a performance evaluation of such a multi-sensor system under real jamming conditions on a vessel seems to be still missing. The paper evaluates both loosely and tightly coupled fusion strategies implemented using an unscented Kalman filter (UKF). The performance of the proposed scheme is evaluated using the civilian maritime jamming testbed in the Baltic Sea.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Md. Syedul Amin ◽  
Mamun Bin Ibne Reaz ◽  
Salwa Sheikh Nasir ◽  
Mohammad Arif Sobhan Bhuiyan ◽  
Mohd. Alauddin Mohd. Ali

Precise navigation is a vital need for many modern vehicular applications. The global positioning system (GPS) cannot provide continuous navigation information in urban areas. The widely used inertial navigation system (INS) can provide full vehicle state at high rates. However, the accuracy diverges quickly in low cost microelectromechanical systems (MEMS) based INS due to bias, drift, noise, and other errors. These errors can be corrected in a stationary state. But detecting stationary state is a challenging task. A novel stationary state detection technique from the variation of acceleration, heading, and pitch and roll of an attitude heading reference system (AHRS) built from the inertial measurement unit (IMU) sensors is proposed. Besides, the map matching (MM) algorithm detects the intersections where the vehicle is likely to stop. Combining these two results, the stationary state is detected with a smaller timing window of 3 s. A longer timing window of 5 s is used when the stationary state is detected only from the AHRS. The experimental results show that the stationary state is correctly identified and the position error is reduced to 90% and outperforms previously reported work. The proposed algorithm would help to reduce INS errors and enhance the performance of the navigation system.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1079 ◽  
Author(s):  
Di Liu ◽  
Hengjun Wang ◽  
Qingyuan Xia ◽  
Changhui Jiang

GNSS (global navigation satellite system) and SINS (strap-down inertial navigation system) integrated navigation systems have been the apparatus for providing reliable and stable position and velocity information (PV). Commonly, there are two solutions to improve the GNSS/SINS integration navigation system accuracy, i.e., employing GNSS with higher position accuracy in the integration system or utilizing the high-grade inertial measurement unit (IMU) to construct the integration system. However, technologies such as RTK (real-time kinematic) and PPP (precise point positioning) that improve GNSS positioning accuracy have higher costs and they cannot work under high dynamic environments. Also, an IMU with high accuracy will lead to a higher cost and larger volume, therefore, a low-cost method to enhance the GNSS/SINS integration accuracy is of great significance. In this paper, multiple receivers based on the GNSS/SINS integrated navigation system are proposed with the aim of providing more precise PV information. Since the chip-scale receivers are cheap, the deployment of multiple receivers in the GNSS/SINS integration will not significantly increase the cost. In addition, two different filtering methods with central and cascaded structure are employed to process the multiple receivers and SINS integration. In the centralized integration filter method, measurements from multiple receivers are directly processed to estimate the SINS errors state vectors. However, the computation load increases heavily due to the rising dimension of the measurement vector. Therefore, a cascaded integration filter structure is also employed to distribute the processing of the multiple receiver and SINS integration. In the cascaded processing method, each receiver is regarded as an individual “sensor”, and a standard federated Kalman filter (FKF) is implemented to obtain an optimal estimation of the navigation solutions. In this paper, a simulation and a field tests are carried out to assess the influence of the number of receivers on the PV accuracy. A detailed analysis of these position and velocity results is presented and the improvements in the PV accuracy demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document