scholarly journals Wavelet-Based Kalman Smoothing Method for Uncertain Parameters Processing: Applications in Oil Well-Testing Data Denoising and Prediction

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4541 ◽  
Author(s):  
Xin Feng ◽  
Qiang Feng ◽  
Shaohui Li ◽  
Xingwei Hou ◽  
Mengqiu Zhang ◽  
...  

The low-distortion processing of well-testing geological parameters is a key way to provide decision-making support for oil and gas field development. However, the classical processing methods face many problems, such as the stochastic nature of the data, the randomness of initial parameters, poor denoising ability, and the lack of data compression and prediction mechanisms. These problems result in poor real-time predictability of oil operation status and difficulty in offline interpreting the played back data. Given these, we propose a wavelet-based Kalman smoothing method for processing uncertain oil well-testing data. First, we use correlation and reconstruction errors as analysis indicators and determine the optimal combination of decomposition scale and vanishing moments suitable for wavelet analysis of oil data. Second, we build a ground pressure measuring platform and use the pressure gauge equipped with the optimal combination parameters to complete the downhole online wavelet decomposition, filtering, Kalman prediction, and data storage. After the storage data are played back, the optimal Kalman parameters obtained by particle swarm optimization are used to complete the data smoothing for each sample. The experiments compare the signal-to-noise ratio and the root mean square error before and after using different classical processing models. In addition, robustness analysis is added. The proposed method, on the one hand, has the features of decorrelation and compressing data, which provide technical support for real-time uploading of downhole data; on the other hand, it can perform minimal variance unbiased estimates of the data, filter out the interference and noise, reduce the reconstruction error, and make the data have a high resolution and strong robustness.

2012 ◽  
Vol 560-561 ◽  
pp. 1188-1194
Author(s):  
Jun Tai Shi ◽  
Xiang Fang Li ◽  
Lei Zhang ◽  
Wei Na Ren ◽  
Le Zhong Li ◽  
...  

For a case of constant-rate liquid production from a single well centered in a horizontal, homogeneous-acting, isopachous, and infinite reservoir, based on fundamentals of fluid flow in porous media the bottom hole flowing pressure never stabilize. In the process of field well testing, however, pressure values measured by the pressure gauge which has a definite resolution value will not change after a period, so the bottom hole flowing pressure can be considered to be stabilized. According to this situation, through theoretical derivation, a stabilized time formula is firstly proposed, by which the time after which the bottom hole flowing pressure measured with a pressure gauge will be stabilized can be calculated, and the stabilized time for a given pressure gauge is in direct proportion to the liquid producing rate, but in inverse proportion to the resolution ratio of the pressure gauge. Applied the stabilized time formula, a new formula of detectable radius can be derived, by which the effect of resolution of the pressure gauge can be considered. Secondly, the time after which the value of the pressure gauge measured in the bottom hole of the observation well starts to change during interference testing is obtained, and the time is related to the fluid flow rate and the distance between the producing well and the observation well. The conclusion can be applied as a reference in the design process of working system during well testing.


2020 ◽  
Vol 206 ◽  
pp. 01024
Author(s):  
Feng Xin ◽  
Li Shaohui ◽  
Feng Qiang ◽  
Liu Shugui

During petroleum exploration and exploitation, the oil well-testing data collected by pressure gauges are used for monitoring the well condition and recording the reservoir performance. However, due to the large number of the collected data, the classification of this large volume of data requires a previous processing for the removal of noise and outliers. It is impractical to partition and process these data manually. Vibration-based features reflect geological properties and offer a promising option to fulfil such requirements. Based on the 75 on-site measured samples, the time-frequency-domain features are extracted and the classification performance of three classical classifiers are investigated. Then the downhole data processing and classification method is present by analysing the cross interaction of different types of data features and different classification mechanism. Several feature combinations are tested to establish a processing flow that can efficiently remove the noise and preserve the shape of curves, high signal to noise ratio rates, with minimum absolute errors. The results show that optimal multi-feature combination can achieve the highest working stage identification rate of 72%, the parameters optimized support vector machine can achieve the better classification performance than other listed classifiers. This paper provides a theoretical study for the data denoising and processing to enhance the working stage classification accuracy.


Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.


2015 ◽  
Vol 713-715 ◽  
pp. 1448-1451
Author(s):  
Lin Lu ◽  
Yan Feng Zhang ◽  
Xiao Feng Li

The high-altitude missile and other special application occasions have requirements on image storage system, such as small size, high storage speed, low temperature resistance, etc. Commonly used image storage system in the market cannot meet such requirement. In the paper, real-time image storage system solutions on missile based on FPGA should be proposed. The system mainly consists of acquisition module and memory reading module. The whole system adopts FPGA as main control chip for mainly completing real-time decoding and acquisition on one path of PAL format video images, reading and writing of NandFlash chipset, erasure, bad block management and so on. The solution has passed various environmental tests with stable performance, large data storage capacity and easy expansion, which has been used in engineering practice.


2021 ◽  
Author(s):  
Gabriela Chaves ◽  
Danielle Monteiro ◽  
Virgilio José Martins Ferreira

Abstract Commingle production nodes are standard practice in the industry to combine multiple segments into one. This practice is adopted at the subsurface or surface to reduce costs, elements (e.g. pipes), and space. However, it leads to one problem: determine the rates of the single elements. This problem is recurrently solved in the platform scenario using the back allocation approach, where the total platform flowrate is used to obtain the individual wells’ flowrates. The wells’ flowrates are crucial to monitor, manage and make operational decisions in order to optimize field production. This work combined outflow (well and flowline) simulation, reservoir inflow, algorithms, and an optimization problem to calculate the wells’ flowrates and give a status about the current well state. Wells stated as unsuited indicates either the input data, the well model, or the well is behaving not as expected. The well status is valuable operational information that can be interpreted, for instance, to indicate the need for a new well testing, or as reliability rate for simulations run. The well flowrates are calculated considering three scenarios the probable, minimum and maximum. Real-time data is used as input data and production well test is used to tune and update well model and parameters routinely. The methodology was applied using a representative offshore oil field with 14 producing wells for two-years production time. The back allocation methodology showed robustness in all cases, labeling the wells properly, calculating the flowrates, and honoring the platform flowrate.


2020 ◽  
Vol 4 (2) ◽  
pp. 24-29
Author(s):  
Adlian Jefiza ◽  
Indra Daulay ◽  
Jhon Hericson Purba

Permasalahan utama pada penelitian ini merujuk kepada semakin menurunnya daya tahan tubuh lanjut usia (lansia). Hal ini membutuhkan sistem monitoring aktivitas lansia secara real time. Untuk mendeteksi kegiatan para lansia, dirancang sebuah perangkat monitoring dengan accelerometer 3-sumbu dan gyroscope 3-sumbu. Data sensor diperoleh dari lima partisipan. Setiap partisipan melakukan lima gerakan yaitu terjatuh, duduk, tidur, rukuk dan sujud. Gerakan yang dipilih adalah gerakan yang menyerupai gerakan jatuh. Total data yang diperoleh dari partisipan adalah 75 data yang terbagi menjadi training data dan testing data. Penelitian ini menggunakan metode transformasi Wavelet untuk mengenali fitur dari gerakan. Untuk pengklasifikasian setiap gerakan, digunakan metode K-nearest neighbors (KNN). Hasil klasifikasi gerakan menggunakan lima kelas menghasilkan nilai root mean square sebesar 0.0074 dengan akurasi 100%.


2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


Repositor ◽  
2020 ◽  
Vol 2 (5) ◽  
pp. 541
Author(s):  
Denni Septian Hermawan ◽  
Syaifuddin Syaifuddin ◽  
Diah Risqiwati

AbstrakJaringan internet yang saat ini di gunakan untuk penyimpanan data atau halaman informasi pada website menjadi rentan terhadap serangan, untuk meninkatkan keamanan website dan jaringannya, di butuhkan honeypot yang mampu menangkap serangan yang di lakukan pada jaringan lokal dan internet. Untuk memudahkan administrator mengatasi serangan digunakanlah pengelompokan serangan dengan metode K-Means untuk mengambil ip penyerang. Pembagian kelompok pada titik cluster akan menghasilkan output ip penyerang.serangan di ambil sercara realtime dari log yang di miliki honeypot dengan memanfaatkan MHN.Abstract The number of internet networks used for data storage or information pages on the website is vulnerable to attacks, to secure the security of their websites and networks, requiring honeypots that are capable of capturing attacks on local networks and the internet. To make it easier for administrators to tackle attacks in the use of attacking groupings with the K-Means method to retrieve the attacker ip. Group divisions at the cluster point will generate the ip output of the attacker. The strike is taken as realtime from the logs that have honeypot by utilizing the MHN.


Sign in / Sign up

Export Citation Format

Share Document