scholarly journals Mapping Small-Scale Horizontal Velocity Field in Panzhinan Waterway by Coastal Acoustic Tomography

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5717
Author(s):  
Haocai Huang ◽  
Xinyi Xie ◽  
Yong Guo ◽  
Hangzhou Wang

Mapping small-scale high-precision velocity fields is of great significance to oceanic environment research. Coastal acoustic tomography (CAT) is a frontier technology used to observe large-scale velocity field in the horizontal slice. Nonetheless, it is difficult to observe the velocity field using the CAT in small-scale areas, specifically where the flow field is complex such as ocean ranch and artificial upwelling areas. This paper conducted a sound transmission experiment using four 50 kHz CAT systems in the Panzhinan waterway. Notably, sound transmission based on the round-robin method was recommended for small-scale CAT observation. The travel time between stations, obtained by correlation of raw data, was applied to reconstruct the horizontal velocity fields using Tapered Least Square inversion. The minimum net volume transport was 8.7 m3/s at 12:32, 1.63% of the total inflow volume transport indicating that the observational errors were acceptable. The relative errors of the range-average velocity calculated by differential travel time were 1.54% (path 2) and 0.92% (path 6), respectively. Moreover, the inversion velocity root-mean-square errors (RMSEs) were 0.5163, 0.1494, 0.2103, 0.2804 and 0.2817 m/s for paths 1, 2, 3, 4 and 6, respectively. The feasibility and acceptable accuracy of the CAT method in the small-scale velocity profiling measurement were validated. Furthermore, a three-dimensional (3-D) velocity field mapping should be performed with combined analysis in horizontal and vertical slices.

Author(s):  
Yoram Rubin

This chapter deals with computing the velocity fields in heterogeneous media. This is a broad area, and we shall concentrate here on upscaling, on the spatial correlation pattern of the velocity, and on accuracy measures for techniques that compute velocity fields. Numerical simulations of velocity fields in heterogeneous media (Ababou et al., 1988, 1989; Bellin et al., 1992, 1994; Bellin and Rubin, 1996; Dykaar and Kitandis, 1992a,b; Hassan et al., 1998a,b; Salandin and Fiorotto, 1998) indicate that to capture accurately the effects of the spatial variability of the conductivity on the velocity field, the conductivity field should be modeled with high resolution. Techniques for generating highly detailed realizations of rock properties were reviewed earlier. Because of the huge level of detail included in these realizations, large-scale flow simulations can become computationally intensive. However, the need for fine detail varies over the aquifer. For example, a high level of detail is needed where the velocity field may vary rapidly, such as near wells, or over areas traversed by a contaminant plume, or for describing small-scale features which dominate the flow, such as high-conductivity channels. Coarsening the grid over areas where high resolution is unnecessary can reduce the computational effort. To be able to do that, a procedure is needed for assigning properties such as conductivity on a coarser scale which is more appropriate for simulation, while avoiding the loss of important details. Such a procedure is called upscaling (also scale-up). Upscaling assigns properties to blocks based on subgrid-scale heterogeneity. Upscaling leads to block-effective properties. Unlike effective properties, block-effective properties depend on the size of the block. In the limit of block dimensions much larger than the integral scale of the heterogeneity, the block-effective properties become equal to the media's effective properties. Unlike the case of effective conductivities, there is no consensus about the definition of block conductivity. For example, Rubin and Gomez-Hernandez (1990) defined the block conductivity as the coefficient of proportionality between the block-averaged flux and the gradient. Indelman and Dagan (1993a, b) stipulated that the block-effective conductivity should dissipate energy at a rate equal to the dissipation due to the small-scale heterogeneity.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 885
Author(s):  
Sergio Ghidini ◽  
Luca Maria Chiesa ◽  
Sara Panseri ◽  
Maria Olga Varrà ◽  
Adriana Ianieri ◽  
...  

The present study was designed to investigate whether near infrared (NIR) spectroscopy with minimal sample processing could be a suitable technique to rapidly measure histamine levels in raw and processed tuna fish. Calibration models based on orthogonal partial least square regression (OPLSR) were built to predict histamine in the range 10–1000 mg kg−1 using the 1000–2500 nm NIR spectra of artificially-contaminated fish. The two models were then validated using a new set of naturally contaminated samples in which histamine content was determined by conventional high-performance liquid chromatography (HPLC) analysis. As for calibration results, coefficient of determination (r2) > 0.98, root mean square of estimation (RMSEE) ≤ 5 mg kg−1 and root mean square of cross-validation (RMSECV) ≤ 6 mg kg−1 were achieved. Both models were optimal also in the validation stage, showing r2 values > 0.97, root mean square errors of prediction (RMSEP) ≤ 10 mg kg−1 and relative range error (RER) ≥ 25, with better results showed by the model for processed fish. The promising results achieved suggest NIR spectroscopy as an implemental analytical solution in fish industries and markets to effectively determine histamine amounts.


2021 ◽  
Vol 9 (7) ◽  
pp. 755
Author(s):  
Kangkang Jin ◽  
Jian Xu ◽  
Zichen Wang ◽  
Can Lu ◽  
Long Fan ◽  
...  

Warm current has a strong impact on the melting of sea ice, so clarifying the current features plays a very important role in the Arctic sea ice coverage forecasting study field. Currently, Arctic acoustic tomography is the only feasible method for the large-range current measurement under the Arctic sea ice. Furthermore, affected by the high latitudes Coriolis force, small-scale variability greatly affects the accuracy of Arctic acoustic tomography. However, small-scale variability could not be measured by empirical parameters and resolved by Regularized Least Squares (RLS) in the inverse problem of Arctic acoustic tomography. In this paper, the convolutional neural network (CNN) is proposed to enhance the prediction accuracy in the Arctic, and especially, Gaussian noise is added to reflect the disturbance of the Arctic environment. First, we use the finite element method to build the background ocean model. Then, the deep learning CNN method constructs the non-linear mapping relationship between the acoustic data and the corresponding flow velocity. Finally, the simulation result shows that the deep learning convolutional neural network method being applied to Arctic acoustic tomography could achieve 45.87% accurate improvement than the common RLS method in the current inversion.


2013 ◽  
Vol 552 ◽  
pp. A113 ◽  
Author(s):  
Th. Roudier ◽  
M. Rieutord ◽  
V. Prat ◽  
J. M. Malherbe ◽  
N. Renon ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4007 ◽  
Author(s):  
Qian Li ◽  
Jiabin Wu ◽  
Yunshan Chen ◽  
Jingyuan Wang ◽  
Shijie Gao ◽  
...  

In this paper, we propose a new method to improve the position measurement accuracy for Laguerre-Gaussian beams on a quadrant detector (QD). First, the error effects of the detector diameter and the gap size are taken into account, and the position error compensation factor is introduced into the conventional formula. Then, in order to reduce the number of parameters, the concept of effective radius is proposed. Thus, a new analytical expression is obtained with a best fit using the least square method. It is verified by simulation that this approach can reduce the maximum error by 97.4% when the beam radius is 0.95 mm; meanwhile, the root mean square errors under different radii are all less than 0.004 mm. The results of simulation show that the new method could effectively improve the accuracy of the QD measurement for different radii. Therefore, the new method would have a good prospect in the engineering practice of beam position measurements.


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247826
Author(s):  
Bård A. Bendiksen ◽  
Gary McGinley ◽  
Ivar Sjaastad ◽  
Lili Zhang ◽  
Emil K. S. Espe

Myocardial velocities carry important diagnostic information in a range of cardiac diseases, and play an important role in diagnosing and grading left ventricular diastolic dysfunction. Tissue Phase Mapping (TPM) Magnetic Resonance Imaging (MRI) enables discrete sampling of the myocardium’s underlying smooth and continuous velocity field. This paper presents a post-processing framework for constructing a spatially and temporally smooth and continuous representation of the myocardium’s velocity field from TPM data. In the proposed scheme, the velocity field is represented through either linear or cubic B-spline basis functions. The framework facilitates both interpolation and noise reducing approximation. As a proof-of-concept, the framework was evaluated using artificially noisy (i.e., synthetic) velocity fields created by adding different levels of noise to an original TPM data. The framework’s ability to restore the original velocity field was investigated using Bland-Altman statistics. Moreover, we calculated myocardial material point trajectories through temporal integration of the original and synthetic fields. The effect of noise reduction on the calculated trajectories was investigated by assessing the distance between the start and end position of material points after one complete cardiac cycle (end point error). We found that the Bland-Altman limits of agreement between the original and the synthetic velocity fields were reduced after application of the framework. Furthermore, the integrated trajectories exhibited consistently lower end point error. These results suggest that the proposed method generates a realistic continuous representation of myocardial velocity fields from noisy and discrete TPM data. Linear B-splines resulted in narrower limits of agreement between the original and synthetic fields, compared to Cubic B-splines. The end point errors were also consistently lower for Linear B-splines than for cubic. Linear B-splines therefore appear to be more suitable for TPM data.


Sign in / Sign up

Export Citation Format

Share Document