scholarly journals A 5.86 Million Quality Factor Cylindrical Resonator with Improved Structural Design Based on Thermoelastic Dissipation Analysis

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6003
Author(s):  
Libin Zeng ◽  
Yiming Luo ◽  
Yao Pan ◽  
Yonglei Jia ◽  
Jianping Liu ◽  
...  

The cylindrical resonator is the core component of cylindrical resonator gyroscopes (CRGs). The quality factor (Q factor) of the resonator is one crucial parameter that determines the performance of the gyroscope. In this paper, the finite element method is used to theoretically investigate the influence of the thermoelastic dissipation (TED) of the cylindrical resonator. The improved structure of a fused silica cylindrical resonator is then demonstrated. Compared with the traditional structure, the thermoelastic Q (QTED) of the resonator is increased by 122%. In addition, the Q factor of the improved cylindrical resonator is measured, and results illustrate that, after annealing and chemical etching, the Q factor of the resonator is significantly higher than that of the cylindrical resonators reported previously. The Q factor of the cylindrical resonator in this paper reaches 5.86 million, which is the highest value for a cylindrical resonator to date.

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1052
Author(s):  
Libin Zeng ◽  
Yunfeng Tao ◽  
Yao Pan ◽  
Jianping Liu ◽  
Kaiyong Yang ◽  
...  

For the axisymmetric shell resonator gyroscopes, the quality factor (Q factor) of the resonator is one of the core parameters limiting their performances. Surface loss is one of the dominating losses, which is related to the subsurface damage (SSD) that is influenced by the grinding parameters. This paper experimentally studies the surface roughness and Q factor variation of six resonators ground by three different grinding speeds. The results suggest that the removal of the SSD cannot improve the Q factor continuously, and the variation of surface roughness is not the dominant reason to affect the Q factor. The measurement results indicate that an appropriate increase in the grinding speed can significantly improve the surface quality and Q factor. This study also demonstrates that a 20 million Q factor for fused silica cylindrical resonators is achievable using appropriate manufacturing processes combined with post-processing etching, which offers possibilities for developing high-precision and low-cost cylindrical resonator gyroscopes.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 695
Author(s):  
Lu ◽  
Xi ◽  
Xiao ◽  
Shi ◽  
Zhuo ◽  
...  

Frequency trimming based on mass and stiffness modification is an important post-fabrication process for micro-shell resonators (MSRs). However, the trimming effects on the quality factor are seldom studied, although they may have great influence on the performance of the resonator. This paper presents a study on the quality factor (Q-factor) variation of trimmed micro-shell resonators (MSR). Thermoelastic damping (QTED) and anchor loss (Qanchor) are found to be the dominant energy loss mechanisms resulting in the reduction of the overall Q-factor, according to finite element method (FEM). The effects of different trimming methods on QTED and Qanchor are studied here, respectively. It is found that trimming grooves ablated in the rim of the resonator can cause a ~1–10% reduction of QTED, and the length of trimming groove is positively related to the reduction of QTED. The reduction of QTED caused by the mass adding process is mainly related to the thermal expansion coefficient and density of the additive and contact area between the resonator and additive masses. Besides, the first and second harmonic errors caused by asymmetrical trimming can cause a 10–90% reduction of Qanchor. Finally, trimming experiments were conducted on different resonators and the results were compared with FEM simulation. The work presented in this paper could help to optimize the trimming process of MSRs.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Chakresh Kumar ◽  
Ghanendra Kumar

AbstractThe objective of current work is to design and analyzed 96×10 Gbps DWDM system taking EDFA, SOA, and RAMAN amplifier as an inline amplifiers up to a fiber length of 300 km. The performance of EDFA, SOA, and RAMAN amplifier is measured on the basis of power received, Q-factor, probability of error and BER for various values of fiber distance. In this paper it has been proved that for 96 channels DWDM system at 10 Gbps bit rate, EDFA reveals superior performance as far as the amount of power received is concerned. The value of quality factor (Q-factor) for RAMAN amplifier is almost identical to that of the Q-factor for EDFA and is higher than the Q-factor for SOA till a fiber length of roughly 80 km thereafter SOA reveals somewhat better Q-factor than EDFA and RAMAN amplifier. As far as BER is concerned EDFA and RAMAN amplifier show roughly identical and somewhat lower BER than SOA till a fiber length of roughly 80 km, afterwards SOA reveal somewhat lesser BER till the fiber length of 210 km. In relation to the probability of error P(E), It is analyzed that P(E) remains more or less same for the entire set of optical amplifiers(OAs) but beyond the fiber length of 240 km EDFA shows somewhat lower P(E) than the other two OAs. At the end the Eye diagrams for the three OAs are also figure out.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1032
Author(s):  
Pengbo Xiao ◽  
Zhinan Qiu ◽  
Yiming Luo ◽  
Yao Pan ◽  
Tianliang Qu ◽  
...  

The fused silica cylindrical resonator is a type of axisymmetric resonator that can be used for Coriolis vibratory gyroscopes. Although the resonant frequency, frequency mismatch, and Q factor are natural properties of the resonator, they can change with temperature. Therefore, the temperature drift severely limits the detection accuracy and bias stability of the gyroscope. In this paper, the influence of temperature variation on the vibrational characteristics of fused silica cylindrical resonators was investigated. Experiments were performed on a fused silica cylindrical resonator coated with Cr/Au films. It was shown that at the temperature range from 253.15 K to 353.15 K, the resonant frequency linearly increased with temperature, the frequency mismatch remained unchanged, and the Q factor gradually increased till about 333.15 K, when it began to decrease. Meanwhile, the change of thermoelastic damping with temperature may dominate the variation of Q factor at the temperature range from 253.15 K to 353.15 K. This phenomenon was theoretically analyzed and the variation trends of results were consistent with the theoretical analysis. This study indicates that, for the fused silica cylindrical resonator, to discover the influence of temperature variation on the resonant frequency, frequency mismatch, and Q factor, there are certain rules to follow and repeat. The relationship between temperature and frequency can be established, which provides the feasibility of using self-calibration based on temperature characteristics of the resonator for temperature drift compensations. Additionally, there is an optimum temperature that may improve the performance of the Coriolis vibratory gyroscope with the fused silica cylindrical resonator.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 713
Author(s):  
Naim Ben Ali ◽  
Haitham Alsaif ◽  
Youssef Trabelsi ◽  
Muhammad Tajammal Chughtai ◽  
Vigneswaran Dhasarathan ◽  
...  

This paper aims to theoretically study the concept of a photonic salinity and temperature sensor according to a deformed one-dimensional photonic structure. The fundamental capability of the proposed sensor is studied. Simultaneously we search to optimize the thickness of the structure and to get the maximum salinity and temperature sensitivity. The structure is constructed by alternating layers of TiO2 and fused-silica P times. In the middle of the structure, a cavity containing seawater is inserted to measure its salinity and temperature. The transfer matrix method (TMM) is used to simulate the wave-transmittance spectra. It is shown that the quality factor (Q-factor) of the resonance peaks depends on the number (P) of layers. After that, the thickness of the layers is deformed by changing the deformation degree (h). The parameters P and h are optimized to get the maximal Q-factor with the minimal number of layers and structure thickness. The best sensitivity SS of the proposed salinity sensor is 558.82 nm/RFIU with a detection limit of 0.0034 RFIU. In addition, the best sensitivity ST of the designed temperature sensor is 600 nm/RFIU with a detection limit of 0.0005 RFIU.


2021 ◽  
Vol 29 (1) ◽  
pp. 70-96
Author(s):  
N.G. Sharma ◽  
◽  
Sundararajan T. ◽  
G.S. Singh ◽  
◽  
...  

The most critical element of Hemispherical Resonator Gyroscope (HRG) is the high quality factor (Q-factor) mechanical resonator. This paper discusses the role of thermoelastic damping (TED) on effective Q-factor. Finite element method (FEM) is used to solve this highly coupled field problem involving vibration, solid mechanics, heat transfer and thermodynamics. The major contribution of this paper is the sensitivity analysis of the effect of material property, operating temperature and dimensions to arrive at macro scale resonator configuration. Hybrid hemispherical-cylindrical configuration is proposed by studying the performance parameters such as effective mass and angular gain.The uniqueness of the present work is the sensitivity study of ultra thin film coating (volume fraction of 0.01%), coating variations and different coating configurations. The coating can reduce the Q-factor by a few orders compared to uncoated shell. It has been found that coating material selection and coating configuration are very important factors. Another significance of the present work is the realization and detailed characterization of the hybrid fused silica resonator. Thin film gold coating is done on the 3D surfaces of the realized precision resonator. Detailed coating characterization is carried out using sophisticated instruments. Very fine balancing to the order of a few mHz is achieved after coating. Q-factor measurement of the coated resonator is carried out using LDV and achieved a few millions in the final functional hybrid resonator.


2020 ◽  
Vol 35 (10) ◽  
pp. 1222-1227
Author(s):  
Norhanani Rahman ◽  
Zahriladha Zakaria ◽  
Rosemizi Rahim ◽  
Maizatul Said ◽  
Amyrul Bahar ◽  
...  

A Nested complementary split ring resonator (CSRR) was proposed based on planar structure. The main objective of this work is to get a higher quality factor (Q-factor) with minimal error detection of complex permittivity. The sensor operated at the 3.37GHz resonant frequency and simulated by ANSYS HFSS software. Subsequently, the designed sensor has been fabricated and tested with the presence of several material under test (MUTs) placed over the sensor. The result achieved high unloaded Q-factor, 464. There has been proof of good agreement concerning the results between theoretical, simulation, and measured parameters of error detection, which is below 13.2% real part permittivity and 2.3% the loss tangent. The proposed sensor is practically useful for the food industry, bio-sensing, and pharmacy industry applications.


2017 ◽  
Vol 260 ◽  
pp. 81-89 ◽  
Author(s):  
Yao Pan ◽  
Tianliang Qu ◽  
Dongya Wang ◽  
Suyong Wu ◽  
Jianping Liu ◽  
...  

Author(s):  
Jiewen Liu ◽  
Joshua Jaekel ◽  
Dharamdeo Ramdani ◽  
Nabeel Khan ◽  
David S.-K. Ting ◽  
...  

High quality factor (Q-factor) is a crucial parameter for the development of precision inertial resonators. Q-factor indicates efficiency of a resonator in retaining its energy during oscillations. This paper explores the effects of different design parameters on Q-factor of a 3D hemispherical (wine-glass) inertial resonator. Thermo-elastic damping (TED) loss mechanisms in a 3D non-inverted wine-glass (hemispherical) shell resonator is systematically investigated and presented in this paper. We investigated TED loss resulting from the effects of hemisphere geometric parameters (such as thickness, height, and radius), mass imbalance, thickness non-uniformity, and edge defects. We used glassblowing to fabricate hemispherical 3D shell resonators. The results presented in this paper can facilitate selecting efficient geometric and material properties for achieving desired Q-factor in 3D inertial resonators. Enhancing the Q-factor in MEMS based 3D resonators can further enable the development of high precision resonators and gyroscopes.


Sign in / Sign up

Export Citation Format

Share Document