scholarly journals A General Grid-Less Design Method for Location and Pressure Sensors with High Precision

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7286
Author(s):  
Xiaobo Zhu ◽  
Xiong Cheng ◽  
Weidong Zhang ◽  
Jiale Gao ◽  
Yijie Dai ◽  
...  

Bionic electronic skin can accurately sense and locate surface pressure, which is widely demanded in many fields. Traditional electronic skin design usually relies on grid-architecture sensor arrays, requiring complex grid and interconnection arrangements as well as high cost. Grid-less planar sensors can solve the problem by using electrodes only at the edges, but they usually require the use of mapping software such as electrical impedance tomography to achieve high precision. In this work, a design method of high-precision grid-less planar pressure sensors based on the back-propagation (BP) neural network is proposed. The measurement precision of this method is demonstrated to be over two orders of magnitude higher than that of a grid-structure sensor array with the same electrode distribution density. Moreover, this method can be used for irregularly-shaped and non-uniform sensors, which further reduces the manufacturing difficulty and increases the application flexibility.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 61570-61580 ◽  
Author(s):  
Weichen Li ◽  
Junying Xia ◽  
Ge Zhang ◽  
Hang Ma ◽  
Benyuan Liu ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 569
Author(s):  
Jianzhong Chen ◽  
Ke Sun ◽  
Rong Zheng ◽  
Yi Sun ◽  
Heng Yang ◽  
...  

In this study, we developed a radial artery pulse acquisition system based on finger-worn dense pressure sensor arrays to enable three-dimensional pulse signals acquisition. The finger-worn dense pressure-sensor arrays were fabricated by packaging 18 ultra-small MEMS pressure sensors (0.4 mm × 0.4 mm × 0.2 mm each) with a pitch of 0.65 mm on flexible printed circuit boards. Pulse signals are measured and recorded simultaneously when traditional Chinese medicine practitioners wear the arrays on the fingers while palpating the radial pulse. Given that the pitches are much smaller than the diameter of the human radial artery, three-dimensional pulse envelope images can be measured with the system, as can the width and the dynamic width of the pulse signals. Furthermore, the array has an effective span of 11.6 mm—3–5 times the diameter of the radial artery—which enables easy and accurate positioning of the sensor array on the radial artery. This study also outlines proposed methods for measuring the pulse width and dynamic pulse width. The dynamic pulse widths of three volunteers were measured, and the dynamic pulse width measurements were consistent with those obtained by color Doppler ultrasound. The pulse wave velocity can also be measured with the system by measuring the pulse transit time between the pulse signals at the brachial and radial arteries using the finger-worn sensor arrays.


2015 ◽  
Vol 3 (27) ◽  
pp. 5436-5441 ◽  
Author(s):  
Yan-Long Tai ◽  
Zhen-Guo Yang

Flexible pressure sensors are essential components of an electronic skin for future attractive applications ranging from human healthcare monitoring to biomedical diagnostics to robotic skins to prosthetic limbs.


2021 ◽  
Author(s):  
William Anderst ◽  
Goeran Fiedler ◽  
Kentaro Onishi ◽  
Gina McKernan ◽  
Tom Gale ◽  
...  

Abstract • Background: Among the challenges of living with lower limb loss is the increased risk of long-term health problems that can be either attributed directly to the amputation surgery and/or prosthetic rehabilitation or indirectly to a disability-induced sedentary lifestyle. These problems are exacerbated by poorly fit prosthetic sockets. There is a knowledge gap regarding how the socket design affects in-socket mechanics, and how in-socket mechanics affect patient-reported comfort and function. The objectives of this study are: 1) to gain a better understanding of how in-socket mechanics of the residual limb in transfemoral amputees are related to patient-reported comfort and function, 2) to identify clinical tests that can streamline the socket design process, and 3) to evaluate the efficacy and cost of a novel, quantitatively informed socket optimization process.• Methods: Users of transfemoral prostheses will be asked to walk on a treadmill wearing their current socket plus 8 different check sockets with designed changes in different structural measurements that are likely to induce changes in residual limb motion, skin strain, and pressure distribution within the socket. Dynamic biplane radiography and pressure sensors will be used to measure in-socket residual limb mechanics. Patient-reported outcomes will also be collected after wearing each socket. The effects of in-socket mechanics on both physical function and patient-reported outcomes (aim 1) will be assessed using a generalized linear model. Partial correlation analysis will be used to examine the association between research grade measurements and readily available clinical measurements (aim 2). In order to compare the new quantitative design method to the Standard of Care, patient reported outcomes and cost will be compared between the two methods, utilizing the Wilcoxon Mann-Whitney non-parametric test (aim 3).• Discussion: Knowledge on how prosthetic socket modifications affect residual bone and skin biomechanics itself can be applied to devise future socket designs, and the methodology can be used to investigate and improve such designs, past and present. Apart from saving time and costs, this may result in better prosthetic socket fit for a large patient population, thus increasing their mobility, participation, and overall health-related quality of life. • Trial registration: clinicaltrials.gov: NCT05041998


2021 ◽  
Vol 261 ◽  
pp. 03040
Author(s):  
Zhang Shiling

Equal margin design method based on the classic analytic formula is widely used in development of extra-high voltage bushing products, and its effectiveness and practicality have been fully validated. However, model and temperature factors have significant impact on internal E-field distribution of UHVAC and UHVDC bushing condenser, which traditional analytic formula is difficult to evaluate quantitatively, so it’s necessary to improve traditional equal margin design method. Firstly, basic principles of equal margin design method and its software package were briefly described, and the laws of model and temperature factors influencing on condenser E-field were investigated on FEM (finite element method) computing platform. Based on these, mathematical model of improved equal margin design method for bushing condenser was established, and flow chart of optimization process combining FEM electro-thermal coupling calculation with genetic algorithm was presented. The improved method was applied to design of UHV RIP oil-gas prototype to realize uniform axial E-field distribution along bushing condenser and equal partial discharge margin between adjacent foils. Bushing condenser was fabricated according to above optimized design structure, and has passed all type tests. In the paper, the FEM electro-thermal coupling calculation method was applied to the inner insulation optimization design to make bushing condenser’s design more suitable. The paper can provide some theoretical guidelines for research and development of other bushings in UHV level.


Sensor Review ◽  
2015 ◽  
Vol 35 (1) ◽  
pp. 85-97 ◽  
Author(s):  
C.L. Yang ◽  
A. Mohammed ◽  
Y Mohamadou ◽  
T. I. Oh ◽  
M. Soleimani

Purpose – The aim of this paper is to introduce and to evaluate the performance of a multiple frequency complex impedance reconstruction for fabric-based EIT pressure sensor. Pressure mapping is an important and challenging area of modern sensing technology. It has many applications in areas such as artificial skins in Robotics and pressure monitoring on soft tissue in biomechanics. Fabric-based sensors are being developed in conjunction with electrical impedance tomography (EIT) for pressure mapping imaging. This is potentially a very cost-effective pressure mapping imaging solution in particular for imaging large areas. Fabric-based EIT pressure sensors aim to provide a pressure mapping image using current carrying and voltage sensing electrodes attached on the boundary of the fabric patch. Design/methodology/approach – Recently, promising results are being achieved in conductivity imaging for these sensors. However, the fabric structure presents capacitive behaviour that could also be exploited for pressure mapping imaging. Complex impedance reconstructions with multiple frequencies are implemented to observe both conductivity and permittivity changes due to the pressure applied to the fabric sensor. Findings – Experimental studies on detecting changes of complex impedance on fabric-based sensor are performed. First, electrical impedance spectroscopy on a fabric-based sensor is performed. Secondly, the complex impedance tomography is carried out on fabric and compared with traditional EIT tank phantoms. Quantitative image quality measures are used to evaluate the performance of a fabric-based sensor at various frequencies and against the tank phantom. Originality/value – The paper demonstrates for the first time the useful information on pressure mapping imaging from the permittivity component of fabric EIT. Multiple frequency EIT reconstruction reveals spectral behaviour of the fabric-based EIT, which opens up new opportunities in exploration of these sensors.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 623 ◽  
Author(s):  
Bastien Marchiori ◽  
Simon Regal ◽  
Yanid Arango ◽  
Roger Delattre ◽  
Sylvain Blayac ◽  
...  

Development of stretchable electronics has been driven by key applications such as electronics skin for robotic or prosthetic. Mimicking skin functionalities imposes at a minimal level: stretchability, pressure, and temperature sensing capabilities. While the research on pressure sensors for artificial skin is extensive, stretchable temperature sensors remain less explored. In this work, a stretchable temperature and infrared sensor has been developed on a polydimethylsiloxane substrate. The sensor is based on poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as a pyroelectric material. This material is sandwiched between two electrodes. The first one consists of aluminium serpentines, covered by gold in order to get electrical contact and maximum stretchability. The second one is based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that has shown good electrical compatibility with PVDF-TrFE and provides the stretchability of the top electrode. Without poling the PVDF-TrFE, sensor has shown a sensitivity of around 7 pF.°C−1 up to 35% strain without any change in its behaviour. Then, taking advantage on infrared absorption of PEDOT:PSS, a poled device has shown a pyroelectric peak of 13 mV to an infrared illumination of 5 mW at 830 nm. This stretchable device valuably allows an electronic skin (e-skin) use for contact and more importantly non-contact thermal sensing.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4407 ◽  
Author(s):  
Andreia dos Santos ◽  
Elvira Fortunato ◽  
Rodrigo Martins ◽  
Hugo Águas ◽  
Rui Igreja

Electronic skin (e-skin), which is an electronic surrogate of human skin, aims to recreate the multifunctionality of skin by using sensing units to detect multiple stimuli, while keeping key features of skin such as low thickness, stretchability, flexibility, and conformability. One of the most important stimuli to be detected is pressure due to its relevance in a plethora of applications, from health monitoring to functional prosthesis, robotics, and human-machine-interfaces (HMI). The performance of these e-skin pressure sensors is tailored, typically through micro-structuring techniques (such as photolithography, unconventional molds, incorporation of naturally micro-structured materials, laser engraving, amongst others) to achieve high sensitivities (commonly above 1 kPa−1), which is mostly relevant for health monitoring applications, or to extend the linearity of the behavior over a larger pressure range (from few Pa to 100 kPa), an important feature for functional prosthesis. Hence, this review intends to give a generalized view over the most relevant highlights in the development and micro-structuring of e-skin pressure sensors, while contributing to update the field with the most recent research. A special emphasis is devoted to the most employed pressure transduction mechanisms, namely capacitance, piezoelectricity, piezoresistivity, and triboelectricity, as well as to materials and novel techniques more recently explored to innovate the field and bring it a step closer to general adoption by society.


2014 ◽  
Vol 609-610 ◽  
pp. 1020-1022
Author(s):  
Zheng Yuan Zhang ◽  
Yang Cao ◽  
Yong Mei ◽  
Jian Gen Li ◽  
Zhi Cheng Feng

The fabrication of butterfly-shape resonator is key for high precision resonator, for requiring suspend on the silicon substrate. This paper is focused on the technology of making butterfly-shape resonator. the variety of structure design can be used to make butterfly-shape resonator have been analyzed, the structure of butterfly-shape resonator is obtained, and for reducing the etch surface roughness, KOH etching conditions, such as composition, concentration, and temperature of etch solution, have been done. Combining with above testing results, the structure design and optimization KOH etching technology are obtained ,based on the technology, using the boron etch stop technique , the silicon butterfly-shape resonator has been done, it can be used effectively in the fabrication of the silicon resonant sensor.


Sign in / Sign up

Export Citation Format

Share Document