scholarly journals Image-Based Automatic Watermeter Reading under Challenging Environments

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 434
Author(s):  
Qingqi Hong ◽  
Yiwei Ding ◽  
Jinpeng Lin ◽  
Meihong Wang ◽  
Qingyang Wei ◽  
...  

With the rapid development of artificial intelligence and fifth-generation mobile network technologies, automatic instrument reading has become an increasingly important topic for intelligent sensors in smart cities. We propose a full pipeline to automatically read watermeters based on a single image, using deep learning methods to provide new technical support for an intelligent water meter reading. To handle the various challenging environments where watermeters reside, our pipeline disentangled the task into individual subtasks based on the structures of typical watermeters. These subtasks include component localization, orientation alignment, spatial layout guidance reading, and regression-based pointer reading. The devised algorithms for orientation alignment and spatial layout guidance are tailored to improve the robustness of our neural network. We also collect images of watermeters in real scenes and build a dataset for training and evaluation. Experimental results demonstrate the effectiveness of the proposed method even under challenging environments with varying lighting, occlusions, and different orientations. Thanks to the lightweight algorithms adopted in our pipeline, the system can be easily deployed and fully automated.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1249 ◽  
Author(s):  
Alicja Winnicka ◽  
Karolina Kęsik ◽  
Dawid Połap ◽  
Marcin Woźniak ◽  
Zbigniew Marszałek

Rapid development and conducted experiments in the field of the introduction the fifth generation of the mobile network standard allow for the flourishing of the Internet of Things. This is one of the most important reasons to design and test systems that can be implemented to increase the quality of our lives. In this paper, we propose a system model for managing tasks in smart homes using multi-agent solutions. The proposed solution organizes work and distributes tasks to individual family members. An additional advantage is the introduction of gamification, not only between household members, but also between families. The solution was tested to simulate the entire solution as well as the individual components that make up the system. The proposal is described with regard to the possibility of implementing smart homes in future projects.


Author(s):  
Reinaldo Padilha França ◽  
Ana Carolina Borges Monteiro ◽  
Rangel Arthur ◽  
Yuzo Iano

NB-IoT is the most suitable mobile network technology for IoT applications that require exceptionally extensive coverage added with extremely low power consumption, since these applications will generally be characterized by low data rates and moderate reaction times, usually in a few seconds, enabling the creation and development of solutions aimed at smart cities and smart environments. The NB-IoT technology can be characterized as a cellular LPWAN technology operating in a downlink within a bandwidth of 180 kHz and a sub-carrier space of 15 kHz and in the uplink, in general with a single tone transmission ranging between 3.75 kHz or 15 kHz, using coverage enhancement techniques, with characteristics of battery life for more than a decade and with specific battery-saving features. The ease that technological solutions of internet of things (IoT) make available through applications connected through intelligent sensors in traffic lights and parking lots; city pollution sensors; meters for energy, water, and sewage in cities, among other possibilities make systems more efficient, considering NB-IoT connectivity in relation to the treatment of information collected by devices allowing applications to be developed to address market needs. Therefore, this chapter aims to provide an updated discussion on narrowband technologies in the context of the IoT, showing and approaching its success, with a concise bibliographic background, categorizing and synthesizing the technological potential.


Author(s):  
Ashwaq N. Hassan ◽  
Sarab Al-Chlaihawi ◽  
Ahlam R. Khekan

<span>A well Fifth generation (5G) mobile networks have been a common phrase in recent years. We have all heard this phrase and know its importance. By 2025, the number of devices based on the fifth generation of mobile networks will reach about 100 billion devices. By then, about 2.5 billion users are expected to consume more than a gigabyte of streamed data per month. 5G will play important roles in a variety of new areas, from smart homes and cars to smart cities, virtual reality and mobile augmented reality, and 4K video streaming. Bandwidth much higher than the fourth generation, more reliability and less latency are some of the features that distinguish this generation of mobile networks from previous generations.  Clearly, at first glance, these features may seem very impressive and useful to a mobile network, but these features will pose serious challenges for operators and communications companies. All of these features will lead to considerable complexity. Managing this network, preventing errors, and minimizing latency are some of the challenges that the 5th generation of mobile networks will bring. Therefore, the use of artificial intelligence and machine learning is a good way to solve these challenges. in other say, in such a situation, proper management of the 5G network must be done using powerful tools such as artificial intelligence. Various researches in this field are currently being carried out. Research that enables automated management and servicing and reduces human error as much as possible. In this paper, we will review the artificial intelligence techniques used in communications networks. Creating a robust and efficient communications network using artificial intelligence techniques is a great incentive for future research.</span><span> The importance of this issue is such that the sixth generation (6G) of cellular communications; There is a lot of emphasis on the use of artificial intelligence.</span>


Author(s):  
Prince Breja

Abstract: The fifth-generation (5G) mobile network system is the next huge thing in the world of mobile communication. With the rapid development of wireless communication network, It is expected that a fifth-generation network system will provide seamlessly higher data transfer speeds and various capabilities. 5G has evolved in such a way that it can be beneficial for each and every individual who is using it by giving them an ultimate experience. In this article we give a brief overview on working of the electromagnetic spectrum of 5G and its various applications and at the end, the overall opportunities arise in the 5G network system on the basis of their applications. Keywords: 5G Communication, Network, working, speed, Application, Evolution, MIMO,3GPP


2019 ◽  
Vol 7 (2) ◽  
pp. 28-32
Author(s):  
Ekaterina Otsetova-Dudin ◽  

Mobile cellular networks are an indispensable part of modern life, where the need for customer satisfaction in the use of many different services by consumers is constantly increasing. The requirements for higher transmission speed, lossless transmission, reliability, efficiency, low latency, mass connectivity, guarantee of high Quality of Service criteria are repeatedly increasing. All this requires the continuous development of the used technologies as well as the introduction of new generations of networks. Handover mechanism is extremely important in cellular network because of the cellular architecture employed to maximize spectrum utilization. To ensure the quality of service in wireless cellular networks, the report proposes the use of a Horizontal Handoff Priority Scheme. Simulation experiments have been carried out, the probability parameters of the scheme have been evaluated and the probabilities of losses occurrence have been classified as rare events. The proposed material are various algorithms and techniques for the implementation of Vertical and Horizontal Handoff in 3G, 4G and fifth-generation networks to provide the required QoS for mobile users with Ultra-High Definition.


2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


2018 ◽  
Vol 10 (10) ◽  
pp. 3626 ◽  
Author(s):  
Yousaf Zikria ◽  
Sung Kim ◽  
Muhammad Afzal ◽  
Haoxiang Wang ◽  
Mubashir Rehmani

The Fifth generation (5G) network is projected to support large amount of data traffic and massive number of wireless connections. Different data traffic has different Quality of Service (QoS) requirements. 5G mobile network aims to address the limitations of previous cellular standards (i.e., 2G/3G/4G) and be a prospective key enabler for future Internet of Things (IoT). 5G networks support a wide range of applications such as smart home, autonomous driving, drone operations, health and mission critical applications, Industrial IoT (IIoT), and entertainment and multimedia. Based on end users’ experience, several 5G services are categorized into immersive 5G services, intelligent 5G services, omnipresent 5G services, autonomous 5G services, and public 5G services. In this paper, we present a brief overview of 5G technical scenarios. We then provide a brief overview of accepted papers in our Special Issue on 5G mobile services and scenarios. Finally, we conclude this paper.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 894-918
Author(s):  
Luís Rosa ◽  
Fábio Silva ◽  
Cesar Analide

The evolution of Mobile Networks and Internet of Things (IoT) architectures allows one to rethink the way smart cities infrastructures are designed and managed, and solve a number of problems in terms of human mobility. The territories that adopt the sensoring era can take advantage of this disruptive technology to improve the quality of mobility of their citizens and the rationalization of their resources. However, with this rapid development of smart terminals and infrastructures, as well as the proliferation of diversified applications, even current networks may not be able to completely meet quickly rising human mobility demands. Thus, they are facing many challenges and to cope with these challenges, different standards and projects have been proposed so far. Accordingly, Artificial Intelligence (AI) has been utilized as a new paradigm for the design and optimization of mobile networks with a high level of intelligence. The objective of this work is to identify and discuss the challenges of mobile networks, alongside IoT and AI, to characterize smart human mobility and to discuss some workable solutions to these challenges. Finally, based on this discussion, we propose paths for future smart human mobility researches.


Author(s):  
Guangchao Zhang ◽  
Xinyue Kou

In recent years, with the rapid development of VR technology, its application range gradually involves the field of urban landscape design. VR technology can simulate complex environments, breaking through the limitations of traditional environmental design on large amounts of information processing and rendering of renderings. It can display complex and abstract urban environmental design through visualization. With the support of high-speed information transmission in the 5G era, VR technology can simulate the overall urban landscape design by generating VR panoramas, and it can also bring the experiencer into an immersive and interactive virtual reality world through VR video Experience. Based on this, this article uses the 5G virtual reality method in the new media urban landscape design to conduct research, aiming to provide an urban landscape design method with strong authenticity, good user experience and vividness. This paper studies the urban landscape design method in the new media environment; in addition, how to realize the VR panorama in the 5G environment, and also explores the image design of each node in the city in detail; and uses the park design in the city As an example, the realization process of the entire virtual reality is described in detail. The research in this article shows that the new media urban landscape design method based on 5G virtual reality, specifically to the design of urban roads, water divisions, street landscapes, and people’s living environment, makes the realization of smart cities possible.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1608
Author(s):  
Ed Kamya Kiyemba Edris ◽  
Mahdi Aiash ◽  
Jonathan Loo

Device-to-Device (D2D) communications will be used as an underlay technology in the Fifth Generation mobile network (5G), which will make network services of multiple Service Providers (SP) available anywhere. The end users will be allowed to access and share services using their User Equipments (UEs), and thus they will require seamless and secured connectivity. At the same time, Mobile Network Operators (MNOs) will use the UE to offload traffic and push contents closer to users relying on D2D communications network. This raises security concerns at different levels of the system architecture and highlights the need for robust authentication and authorization mechanisms to provide secure services access and sharing between D2D users. Therefore, this paper proposes a D2D level security solution that comprises two security protocols, namely, the D2D Service security (DDSec) and the D2D Attributes and Capability security (DDACap) protocols, to provide security for access, caching and sharing data in network-assisted and non-network-assisted D2D communications scenarios. The proposed solution applies Identity-based Encryption (IBE), Elliptic Curve Integrated Encryption Scheme (ECIES) and access control mechanisms for authentication and authorization procedures. We formally verified the proposed protocols using ProVerif and applied pi calculus. We also conducted a security analysis of the proposed protocols.


Sign in / Sign up

Export Citation Format

Share Document