scholarly journals Assessment of FSDAF Accuracy on Cotton Yield Estimation Using Different MODIS Products and Landsat Based on the Mixed Degree Index with Different Surroundings

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5184
Author(s):  
Linghua Meng ◽  
Huanjun Liu ◽  
Susan L. Ustin ◽  
Xinle Zhang

Research on fusion modeling of high spatial and temporal resolution images typically uses MODIS products at 500 m and 250 m resolution with Landsat images at 30 m, but the effect on results of the date of reference images and the ‘mixed pixels’ nature of moderate-resolution imaging spectroradiometer (MODIS) images are not often considered. In this study, we evaluated those effects using the flexible spatiotemporal data fusion model (FSDAF) to generate fusion images with both high spatial resolution and frequent coverage over three cotton field plots in the San Joaquin Valley of California, USA. Landsat images of different dates (day-of-year (DOY) 174, 206, and 254, representing early, middle, and end stages of the growing season, respectively) were used as reference images in fusion with two MODIS products (MOD09GA and MOD13Q1) to produce new time-series fusion images with improved temporal sampling over that provided by Landsat alone. The impact on the accuracy of yield estimation of the different Landsat reference dates, as well as the degree of mixing of the two MODIS products, were evaluated. A mixed degree index (MDI) was constructed to evaluate the accuracy and time-series fusion results of the different cotton plots, after which the different yield estimation models were compared. The results show the following: (1) there is a strong correlation (above 0.6) between cotton yield and both the Normalized Difference Vegetation Index (NDVI) from Landsat (NDVIL30) and NDVI from the fusion of Landsat with MOD13Q1 (NDVIF250). (2) Use of a mid-season Landsat image as reference for the fusion of MODIS imagery provides a better yield estimation, 14.73% and 17.26% higher than reference images from early or late in the season, respectively. (3) The accuracy of the yield estimation model of the three plots is different and relates to the MDI of the plots and the types of surrounding crops. These results can be used as a reference for data fusion for vegetation monitoring using remote sensing at the field scale.

2021 ◽  
Vol 13 (15) ◽  
pp. 2869
Author(s):  
MohammadAli Hemati ◽  
Mahdi Hasanlou ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh

With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.


2020 ◽  
Vol 12 (22) ◽  
pp. 3826 ◽  
Author(s):  
Yuhong He ◽  
Jian Yang ◽  
Xulin Guo

The ability to quantify green vegetation across space and over time is useful for studying grassland health and function and improving our understanding of the impact of land use and climate change on grasslands. Directly measuring the fraction of green vegetation cover is labor-intensive and thus only practical on relatively smaller experimental sites. Remote sensing vegetation indices, as a commonly-used method for large-area vegetation mapping, were found to produce inconsistent accuracies when mapping green vegetation in semi-arid grasslands, largely due to mixed pixels including both photosynthetic and non-photosynthetic material. The spectral mixture approach has the potential to map the fraction of green vegetation cover in a heterogeneous landscape, thanks to its ability to decompose a spectral signal from a mixed pixel into a set of fractional abundances. In this study, a time series of fractional green vegetation cover (FGVC) from 1999 to 2014 is estimated using the spectral mixture approach for a semi-arid mixed grassland, which represents a typical threatened, species-rich habitat in Central Canada. The shape of pixel clouds in each of the Landsat images is used to identify three major image endmembers (green vegetation, bare soil/litter, and water/shadow) for automated image spectral unmixing. The FGVC derived through the spectral mixture approach correlates highly with field observations (R2 = 0.86). Change in the FGVC over the study period was also mapped, and green vegetation in badlands and uplands is found to experience a slight increase, while vegetation in riparian zone shows a decrease. Only a small portion of the study area is undergoing significant changes, which is likely attributable to climate variability, bison reintroduction, and wildfire. The results of this study suggest that the automated spectral unmixing approach is promising, and the time series of medium-resolution images is capable of identifying changes in green vegetation cover in semi-arid grasslands. Further research should investigate driving forces for areas undergoing significant changes.


2020 ◽  
Author(s):  
Gohar Ghazaryan ◽  
Sergii Skakun ◽  
Simon König ◽  
Ehsan Eyshi Rezaei ◽  
Stefan Siebert ◽  
...  

<p>Timely monitoring of agricultural production and early yield predictions are essential for food security. Crop growth conditions and yield are related to climate variability and extreme events. Remotely sensed time-series can be used to study the variability in crop growth and agricultural production. However, the choice of remotely sensed data and methods is still an issue, as different datasets have different spatiotemporal characteristics. Thus, our primary goal was to study the impact of applying different remotely sensed time series on yield estimation in U.S. at the county and field scale. Furthermore, the impact of crop growth conditions on yield variability was assessed. For county-level analysis, MODIS-based surface reflectance, Land Surface Temperature, and Evapotranspiration time series were used as input datasets. Whereas field-level analysis was carried out using NASA’s Harmonized Landsat Sentinel-2 (HLS) product. 3D convolutional neural network (CNN) and CNN followed by long-short term memory (LSTM) were used. For county-level analysis, the CNN-LSTM model had the highest accuracy, with a mean percentage error of 10.3% for maize and 9.6% for soybean. This model presented robust results for the year 2012, which is considered a drought year. In the case of field-level analysis, all models achieved accurate results with R<sup>2 </sup>exceeding 0.8 when data from mid growing season were used. The results highlight the potential of yield estimation at different management scales.</p>


2019 ◽  
Vol 62 (2) ◽  
pp. 393-404 ◽  
Author(s):  
Aijing Feng ◽  
Meina Zhang ◽  
Kenneth A. Sudduth ◽  
Earl D. Vories ◽  
Jianfeng Zhou

Abstract. Accurate estimation of crop yield before harvest, especially in early growth stages, is important for farmers and researchers to optimize field management and evaluate crop performance. However, existing in-field methods for estimating crop yield are not efficient. The goal of this research was to evaluate the performance of a UAV-based remote sensing system with a low-cost RGB camera to estimate cotton yield based on plant height. The UAV system acquired images at 50 m above ground level over a cotton field at the first flower growth stage. Waypoints and flight speed were selected to allow >70% image overlap in both forward and side directions. Images were processed to develop a geo-referenced orthomosaic image and a digital elevation model (DEM) of the field that was used to extract plant height by calculating the difference in elevation between the crop canopy and bare soil surface. Twelve ground reference points with known height were deployed in the field to validate the UAV-based height measurement. Geo-referenced yield data were aligned to the plant height map based on GPS and image features. Correlation analysis between yield and plant height was conducted row-by-row with and without row registration. Pearson correlation coefficients between yield and plant height with row registration for all individual rows were in the range of 0.66 to 0.96 and were higher than those without row registration (0.54 to 0.95). A linear regression model using plant height was able to estimate yield with root mean square error of 550 kg ha-1 and mean absolute error of 420 kg ha-1. Locations with low yield were analyzed to identify the potential reasons, and it was found that water stress and coarse soil texture, as indicated by low soil apparent electricity conductivity (ECa), might contribute to the low yield. The findings indicate that the UAV-based remote sensing system equipped with a low-cost digital camera was potentially able to monitor plant growth status and estimate cotton yield with acceptable errors. Keywords: Cotton, Geo-registration, Plant height, UAV-based remote sensing, Yield estimation.


2020 ◽  
Author(s):  
quan xu ◽  
Chuanjian Wang ◽  
Jianguo Dai ◽  
peng guo ◽  
Guoshun Zhang ◽  
...  

Abstract Timely and precise yield estimation is of great significance to agricultural management and macro-policy formulation. In order to improve the accuracy and applicability of cotton yield estimation model, this paper proposes a new method called SENP (Seedling Emergence and Number of Peaches) based on Amazon Web Services (AWS). Firstly, using the high-resolution visible light data obtained by the Unmanned Aerial Vehicle (UAV), the spatial position of each cotton seedling in the region was extracted by U-Net model of deep learning. Secondly, Sentinel-2 data were used in analyzing the correlation between the multi-temporal Normalized Difference Vegetation Index (NDVI) and the actual yield, so as to determine the weighting factor of NDVI in each period in the model. Subsequently, to determine the number of bolls, the growth state of cotton was graded. Finally, combined with cotton boll weight, boll opening rate and other information, the cotton yield in the experimental area was estimated by SENP model, and the precision was verified according to the measured data of yield. The experimental results reveal that the U-Net model can effectively extract the information of cotton seedlings from the background with high accuracy. And the precision rate, recall rate and F1 value reached 93.88%, 97.87% and 95.83% respectively. NDVI based on time series can accurately reflect the growth state of cotton, so as to obtain the predicted boll number of every cotton, which greatly improves the accuracy and universality of the yield estimation model. The determination coefficient (R2) of the yield estimation model reached 0.92, indicating that using SENP model for cotton yield estimation is an effective method. This study also proved that the potential and advantage of combining the AWS platform with SENP, due to its powerful cloud computing capacity, especially for deep learning, time-series crop monitoring and large scale yield estimation. This research can provide the reference information for cotton yield estimation and cloud computing platform application.


2019 ◽  
Vol 11 (14) ◽  
pp. 1699 ◽  
Author(s):  
Qi Yin ◽  
Maolin Liu ◽  
Junyi Cheng ◽  
Yinghai Ke ◽  
Xiuwan Chen

Accurate paddy rice mapping with fine spatial detail is significant for ensuring food security and maintaining sustainable environmental development. In northeastern China, rice is planted in fragmented and patchy fields and its production has reached over 10% of the total amount of rice production in China, which has brought the increasing need for updated paddy rice maps in the region. Existing methods for mapping paddy rice are often based on remote sensing techniques by using optical images. However, it is difficult to obtain high quality time series remote sensing data due to the frequent cloud cover in rice planting area and low temporal sampling frequency of satellite imagery. Therefore, paddy rice maps are often developed using few Landsat or time series MODIS images, which has limited the accuracy of paddy rice mapping. To overcome these limitations, we presented a new strategy by integrating a spatiotemporal fusion algorithm and phenology-based algorithm to map paddy rice fields. First, we applied the spatial and temporal adaptive reflectance fusion model (STARFM) to fuse the Landsat and MODIS data and obtain multi-temporal Landsat-like images. From the fused Landsat-like images and the original Landsat images, we derived time series vegetation indices (VIs) with high temporal and high spatial resolution. Then, the phenology-based algorithm, considering the unique physical features of paddy rice during the flooding and transplanting phases/open-canopy period, was used to map paddy rice fields. In order to prove the effectiveness of the proposed strategy, we compared our results with those from other three classification strategies: (1) phenology-based classification based on original Landsat images only, (2) phenology-based classification based on original MODIS images only and (3) random forest (RF) classification based on both Landsat and Landsat-like images. The validation experiments indicate that our fusion-and phenology-based strategy could improve the overall accuracy of classification by 6.07% (from 92.12% to 98.19%) compared to using Landsat data only, and 8.96% (from 89.23% to 98.19%) compared to using MODIS data, and 4.66% (from93.53% to 98.19%) compared to using the RF algorithm. The results show that our new strategy, by integrating the spatiotemporal fusion algorithm and phenology-based algorithm, can provide an effective and robust approach to map paddy rice fields in regions with limited available images, as well as the areas with patchy and fragmented fields.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 826
Author(s):  
Krystian Chachuła ◽  
Robert Nowak ◽  
Fernando Solano

In December 2016, the wastewater treatment plant of Baarle-Nassau, Netherlands, failed. The failure was caused by the illegal disposal of high volumes of acidic waste into the sewer network. Repairs cost between 80,000 and 100,000 EUR. A continuous monitoring system of a utility network such as this one would help to determine the causes of such pollution and could mitigate or reduce the impact of these kinds of events in the future. We have designed and tested a data fusion system that transforms the time-series of sensor measurements into an array of source-localized discharge events. The data fusion system performs this transformation as follows. First, the time-series of sensor measurements are resampled and converted to sensor observations in a unified discrete time domain. Second, sensor observations are mapped to pollutant detections that indicate the amount of specific pollutants according to a priori knowledge. Third, pollutant detections are used for inferring the propagation of the discharged pollutant downstream of the sewage network to account for missing sensor observations. Fourth, pollutant detections and inferred sensor observations are clustered to form tracks. Finally, tracks are processed and propagated upstream to form the final list of probable events. A set of experiments was performed using a modified variant of the EPANET Example Network 2. Results of our experiments show that the proposed system can narrow down the source of pollution to seven or fewer nodes, depending on the number of sensors, while processing approximately 100 sensor observations per second. Having considered the results, such a system could provide meaningful information about pollution events in utility networks.


2022 ◽  
Author(s):  
Fei Li ◽  
Jingya Bai ◽  
Mengyun Zhang ◽  
Ruoyu Zhang

Abstract Background: Different from other parts of the world, China has its own cotton planting pattern. Cotton are densely planted in wide-narrow rows to increase yield in Xinjiang, China, causing the difficulty in the accurate evaluation of cotton yields using remote sensing in such field with branches occluded and overlapped. Results: In this study, low-altitude unmanned aerial vehicle (UAV) imaging and deep convolutional neural networks (DCNN) were used to estimate the yields of densely planted cotton. Images of cotton field were acquired by an UAV at the height of 5 m. Cotton bolls were manually harvested and weighted afterwards. Then, a modified DCNN model was developed by applying encoder-decoder recombination and dilated convolution for pixel-wise cotton boll segmentation termed CD-SegNet. Linear regression analysis was employed to build up the relationship between cotton boll pixels ratio and cotton yield. Yield estimations of four cotton fields were verified after machine harvest and weighting. The results showed that CD-SegNet outperformed the other tested models including SegNet, support vector machine (SVM), and random forest (RF). The average error of the estimated yield of the cotton fields was 6.2%. Conclusions: Overall, the yield estimation of densely planted cotton based on lowaltitude UAV imaging is feasible. This study provides a methodological reference for cotton yield estimation in China.


Sign in / Sign up

Export Citation Format

Share Document