scholarly journals Hyperglycemia Identification Using ECG in Deep Learning Era

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6263
Author(s):  
Renato Cordeiro ◽  
Nima Karimian ◽  
Younghee Park

A growing number of smart wearable biosensors are operating in the medical IoT environment and those that capture physiological signals have received special attention. Electrocardiogram (ECG) is one of the physiological signals used in the cardiovascular and medical fields that has encouraged researchers to discover new non-invasive methods to diagnose hyperglycemia as a personal variable. Over the years, researchers have proposed different techniques to detect hyperglycemia using ECG. In this paper, we propose a novel deep learning architecture that can identify hyperglycemia using heartbeats from ECG signals. In addition, we introduce a new fiducial feature extraction technique that improves the performance of the deep learning classifier. We evaluate the proposed method with ECG data from 1119 different subjects to assess the efficiency of hyperglycemia detection of the proposed work. The result indicates that the proposed algorithm is effective in detecting hyperglycemia with a 94.53% area under the curve (AUC), 87.57% sensitivity, and 85.04% specificity. That performance represents an relative improvement of 53% versus the best model found in the literature. The high sensitivity and specificity achieved by the 10-layer deep neural network proposed in this work provide an excellent indication that ECG possesses intrinsic information that can indicate the level of blood glucose concentration.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Isabella Castiglioni ◽  
Davide Ippolito ◽  
Matteo Interlenghi ◽  
Caterina Beatrice Monti ◽  
Christian Salvatore ◽  
...  

Abstract Background We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy. Methods We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard. Results At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity (95% CI 0.78–0.85), and 0.89 area under the curve (AUC) (95% CI 0.86–0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72–0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73–0.87), and 0.81 AUC (95% CI 0.73–0.87). Radiologists’ reading obtained 0.63 sensitivity (95% CI 0.52–0.74) and 0.78 specificity (95% CI 0.61–0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52–0.74) and 0.86 specificity (95% CI 0.71–0.95) in Centre 2. Conclusions This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pierre Ambrosini ◽  
Eva Hollemans ◽  
Charlotte F. Kweldam ◽  
Geert J. L. H. van Leenders ◽  
Sjoerd Stallinga ◽  
...  

Abstract Cribriform growth patterns in prostate carcinoma are associated with poor prognosis. We aimed to introduce a deep learning method to detect such patterns automatically. To do so, convolutional neural network was trained to detect cribriform growth patterns on 128 prostate needle biopsies. Ensemble learning taking into account other tumor growth patterns during training was used to cope with heterogeneous and limited tumor tissue occurrences. ROC and FROC analyses were applied to assess network performance regarding detection of biopsies harboring cribriform growth pattern. The ROC analysis yielded a mean area under the curve up to 0.81. FROC analysis demonstrated a sensitivity of 0.9 for regions larger than $${0.0150}\,\hbox {mm}^{2}$$ 0.0150 mm 2 with on average 7.5 false positives. To benchmark method performance for intra-observer annotation variability, false positive and negative detections were re-evaluated by the pathologists. Pathologists considered 9% of the false positive regions as cribriform, and 11% as possibly cribriform; 44% of the false negative regions were not annotated as cribriform. As a final experiment, the network was also applied on a dataset of 60 biopsy regions annotated by 23 pathologists. With the cut-off reaching highest sensitivity, all images annotated as cribriform by at least 7/23 of the pathologists, were all detected as cribriform by the network and 9/60 of the images were detected as cribriform whereas no pathologist labelled them as such. In conclusion, the proposed deep learning method has high sensitivity for detecting cribriform growth patterns at the expense of a limited number of false positives. It can detect cribriform regions that are labelled as such by at least a minority of pathologists. Therefore, it could assist clinical decision making by suggesting suspicious regions.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250049 ◽  
Author(s):  
MOHD AFZAN OTHMAN ◽  
NORLAILI MAT SAFRI

Ventricular arrhythmia, especially ventricular fibrillation, is a type of arrhythmia that can cause sudden death. The aim of this paper is to characterize ventricular arrhythmias using semantic mining by extracting their significant characteristics (frequency, damping coefficient and input signal) from electrocardiogram (ECG) signals that represent the biological behavior of the cardiovascular system. Real data from an arrhythmia database are used after noise filtering and were statistically classified into two groups; normal sinus rhythm (N) and ventricular arrhythmia (V). The proposed method achieved high sensitivity and specificity (98.1% and 97.7%, respectively) and was capable of describing the differences between the N and V types in the ECG signal.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emilio Andreozzi ◽  
Gaetano D. Gargiulo ◽  
Daniele Esposito ◽  
Paolo Bifulco

The precordial mechanical vibrations generated by cardiac contractions have a rich frequency spectrum. While the lowest frequencies can be palpated, the higher infrasonic frequencies are usually captured by the seismocardiogram (SCG) signal and the audible ones correspond to heart sounds. Forcecardiography (FCG) is a non-invasive technique that measures these vibrations via force sensing resistors (FSR). This study presents a new piezoelectric sensor able to record all heart vibrations simultaneously, as well as a respiration signal. The new sensor was compared to the FSR-based one to assess its suitability for FCG. An electrocardiogram (ECG) lead and a signal from an electro-resistive respiration band (ERB) were synchronously acquired as references on six healthy volunteers (4 males, 2 females) at rest. The raw signals from the piezoelectric and the FSR-based sensors turned out to be very similar. The raw signals were divided into four components: Forcerespirogram (FRG), Low-Frequency FCG (LF-FCG), High-Frequency FCG (HF-FCG) and heart sounds (HS-FCG). A beat-by-beat comparison of FCG and ECG signals was carried out by means of regression, correlation and Bland–Altman analyses, and similarly for respiration signals (FRG and ERB). The results showed that the infrasonic FCG components are strongly related to the cardiac cycle (R2 > 0.999, null bias and Limits of Agreement (LoA) of ± 4.9 ms for HF-FCG; R2 > 0.99, null bias and LoA of ± 26.9 ms for LF-FCG) and the FRG inter-breath intervals are consistent with ERB ones (R2 > 0.99, non-significant bias and LoA of ± 0.46 s). Furthermore, the piezoelectric sensor was tested against an accelerometer and an electronic stethoscope: synchronous acquisitions were performed to quantify the similarity between the signals. ECG-triggered ensemble averages (synchronized with R-peaks) of HF-FCG and SCG showed a correlation greater than 0.81, while those of HS-FCG and PCG scored a correlation greater than 0.85. The piezoelectric sensor demonstrated superior performances as compared to the FSR, providing more accurate, beat-by-beat measurements. This is the first time that a single piezoelectric sensor demonstrated the ability to simultaneously capture respiration, heart sounds, an SCG-like signal (i.e., HF-FCG) and the LF-FCG signal, which may provide information on ventricular emptying and filling events. According to these preliminary results the novel piezoelectric FCG sensor stands as a promising device for accurate, unobtrusive, long-term monitoring of cardiorespiratory functions and paves the way for a wide range of potential applications, both in the research and clinical fields. However, these results should be confirmed by further analyses on a larger cohort of subjects, possibly including also pathological patients.


2021 ◽  
Author(s):  
Jiahao Chen ◽  
Qiang Guo

Abstract Background: Delayed diagnosis of sepsis urgently requires a fast, convenient, and inexpensive method to improve the early diagnosis of sepsis. Increasing evidence showed that monocyte distribution width (MDW) could be used as a non-invasive biomarker with high sensitivity and specificity for the early diagnosis of sepsis. However, the accuracy and reliability of its diagnosis are still controversial in different studies. Method: A meta-analysis of all available studies regarding the association between MDW and the diagnosis of sepsis was performed to systematically evaluate the diagnostic efficacy of MDW in the prediction of sepsis. Results: The estimated results of all eight studies are as follows: sensitivity, 0.84 (95% CI 0.77, 0.90); specificity, 0.68 (95% CI 0.54, 0.80); PLR, 2.7 (95% CI 1.8, 4.1); NLR, 0.23 (95% CI 0.15, 0.35); DOR is 12 (95% CI 5, 25). The corresponding overall area under the curve is 0.85 (95% CI 0.82, 0.88). Conclusion: In conclusion, this meta-analysis demonstrates that MDW has high accuracy in distinguishing patients with sepsis from healthy controls for early diagnosis of sepsis. However, large-scale prospective studies and joint diagnosis with other indicators are urgently required to confirm our findings and their utilization for routine clinical diagnosis in the future.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2109
Author(s):  
Skandha S. Sanagala ◽  
Andrew Nicolaides ◽  
Suneet K. Gupta ◽  
Vijaya K. Koppula ◽  
Luca Saba ◽  
...  

Background and Purpose: Only 1–2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earlier plaque tissue characterization (PTC) methods were machine learning (ML)-based, which used hand-crafted features that yielded lower accuracy and unreliability. The proposed study shows the role of transfer learning (TL)-based deep learning models for PTC. Methods: As pertained weights were used in the supercomputer framework, we hypothesize that transfer learning (TL) provides improved performance compared with deep learning. We applied 11 kinds of artificial intelligence (AI) models, 10 of them were augmented and optimized using TL approaches—a class of Atheromatic™ 2.0 TL (AtheroPoint™, Roseville, CA, USA) that consisted of (i–ii) Visual Geometric Group-16, 19 (VGG16, 19); (iii) Inception V3 (IV3); (iv–v) DenseNet121, 169; (vi) XceptionNet; (vii) ResNet50; (viii) MobileNet; (ix) AlexNet; (x) SqueezeNet; and one DL-based (xi) SuriNet-derived from UNet. We benchmark 11 AI models against our earlier deep convolutional neural network (DCNN) model. Results: The best performing TL was MobileNet, with accuracy and area-under-the-curve (AUC) pairs of 96.10 ± 3% and 0.961 (p < 0.0001), respectively. In DL, DCNN was comparable to SuriNet, with an accuracy of 95.66% and 92.7 ± 5.66%, and an AUC of 0.956 (p < 0.0001) and 0.927 (p < 0.0001), respectively. We validated the performance of the AI architectures with established biomarkers such as greyscale median (GSM), fractal dimension (FD), higher-order spectra (HOS), and visual heatmaps. We benchmarked against previously developed Atheromatic™ 1.0 ML and showed an improvement of 12.9%. Conclusions: TL is a powerful AI tool for PTC into symptomatic and asymptomatic plaques.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yanghua Fan ◽  
Panpan Liu ◽  
Yiping Li ◽  
Feng Liu ◽  
Yu He ◽  
...  

BackgroundAccurate preoperative differentiation of intracranial hemangiopericytoma and angiomatous meningioma can greatly assist operation plan making and prognosis prediction. In this study, a clini-radiomic model combining radiomic and clinical features was used to distinguish intracranial hemangiopericytoma and hemangioma meningioma preoperatively.MethodsA total of 147 patients with intracranial hemangiopericytoma and 73 patients with angiomatous meningioma from the Tiantan Hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to construct a clinical model, then a clini-radiomic model incorporating the fusion radiomic model and clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated.ResultsSix significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.900 and 0.900 in the training and validation sets, respectively. A clini-radiomic model that incorporated the radiomic model and clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.920 in the training set and 0.910 in the validation set. The analysis of the decision curve showed that the fusion radiomic model and clini-radiomic model were clinically useful.ConclusionsOur clini-radiomic model showed great performance and high sensitivity in the differential diagnosis of intracranial hemangiopericytoma and angiomatous meningioma, and could contribute to non-invasive development of individualized diagnosis and treatment for these patients.


Author(s):  
J. Venton ◽  
P. M. Harris ◽  
A. Sundar ◽  
N. A. S. Smith ◽  
P. J. Aston

The electrocardiogram (ECG) is a widespread diagnostic tool in healthcare and supports the diagnosis of cardiovascular disorders. Deep learning methods are a successful and popular technique to detect indications of disorders from an ECG signal. However, there are open questions around the robustness of these methods to various factors, including physiological ECG noise. In this study, we generate clean and noisy versions of an ECG dataset before applying symmetric projection attractor reconstruction (SPAR) and scalogram image transformations. A convolutional neural network is used to classify these image transforms. For the clean ECG dataset, F1 scores for SPAR attractor and scalogram transforms were 0.70 and 0.79, respectively. Scores decreased by less than 0.05 for the noisy ECG datasets. Notably, when the network trained on clean data was used to classify the noisy datasets, performance decreases of up to 0.18 in F1 scores were seen. However, when the network trained on the noisy data was used to classify the clean dataset, the decrease was less than 0.05. We conclude that physiological ECG noise impacts classification using deep learning methods and careful consideration should be given to the inclusion of noisy ECG signals in the training data when developing supervised networks for ECG classification. This article is part of the theme issue ‘Advanced computation in cardiovascular physiology: new challenges and opportunities’.


Sign in / Sign up

Export Citation Format

Share Document