scholarly journals Applicability of Geomorphic Index for the Potential Slope Instability in the Three River Region, Eastern Tibetan Plateau

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6505
Author(s):  
Feng Liu ◽  
Xin Yao ◽  
Lingjing Li

Geomorphic indices (e.g., the normalized channel steepness index (Ksn) and the stream length-gradient index (SL)) highlight changes in fluvial shapes and gradients. However, the application of these indices was seldom used to identify potential landslide zones. In this study, we used the Ksn and SL indices to detect the significant variations in the stream power along river reaches, which are anomalies associated with landslides, in the Zengqu River watershed, the upper reaches of the Jinsha River. Most of the landslide anomalies originate along the trunk and surrounding tributaries below the knickpoint of the mainstream. This suggests an erosional wave is migrating upstream throughout the drainage area. The fluvial incision may generate over-steepened hillslopes, which could fail in the future. In addition, the divide asymmetry index (DAI) predicts the direction of the divide as the headwaters migrate toward lower relief, higher elevation surfaces. Landslides are expected to occur as the unstable divide migrates. The proposed methodology can benefit the detection and characterization of potential landslide zones. It should improve hazard and risk analysis and the identification of drainage network areas associated with landslides.

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2364 ◽  
Author(s):  
Martina Cignetti ◽  
Danilo Godone ◽  
Aleksandra Wrzesniak ◽  
Daniele Giordan

Structure from Motion (SfM) is a powerful tool to provide 3D point clouds from a sequence of images taken from different remote sensing technologies. The use of this approach for processing images captured from both Remotely Piloted Aerial Vehicles (RPAS), historical aerial photograms, and smartphones, constitutes a valuable solution for the identification and characterization of active landslides. We applied SfM to process all the acquired and available images for the study of the Champlas du Col landslide, a complex slope instability reactivated in spring 2018 in the Piemonte Region (north-western Italy). This last reactivation of the slide, principally due to snow melting at the end of the winter season, interrupted the main road used to reach Sestriere, one of the most famous ski resorts in north-western Italy. We tested how SfM can be applied to process high-resolution multisource datasets by processing: (i) historical aerial photograms collected from five diverse regional flights, (ii) RGB and multi-spectral images acquired by two RPAS, taken in different moments, and (iii) terrestrial sequences of the most representative kinematic elements due to the evolution of the landslide. In addition, we obtained an overall framework of the historical development of the area of interest, and distinguished several generations of landslides. Moreover, an in-depth geomorphological characterization of the Champlas du Col landslide reactivation was done, by testing a cost-effective and rapid methodology based on SfM principles, which is easily repeatable to characterize and investigate active landslides.


2019 ◽  
Author(s):  
Lujendra Ojha ◽  
Ken L. Ferrier ◽  
Tank Ojha

Abstract. Over the past two decades, rates and patterns of Himalayan denudation have been documented through numerous cosmogenic nuclide measurements in central and eastern Nepal, Bhutan, and northern India. To date, however, few denudation rates have been measured in Far Western Nepal – a ~ 300-km-wide region near the center of the Himalayan arc – which presents a significant gap in our understanding of Himalayan denudation. Here we report new catchment-averaged millennial-scale denudation rates inferred from cosmogenic 10Be in fluvial quartz at seven sites in Far Western Nepal. The inferred denudation rates range from 385 ± 31 t km−2 yr−1 (0.15 ± 0.01 mm yr −1) to 8737 ± 2908 t km−2 yr−1 (3.3 ± 1.1 mm yr−1), and, in combination with our analyses of channel topography, are broadly consistent with previously published relationships between catchment-averaged denudation rates and normalized channel steepness across the Himalaya. These data show a weak correlation with catchment-averaged specific stream power, consistent with a Himalaya-wide compilation of previously published stream power values. Together, these observations are consistent with a dependence of denudation rate on both tectonic and climatic forcings, and represent a first step toward filling an important gap in denudation rate measurements in Far Western Nepal.


2020 ◽  
Vol 10 (22) ◽  
pp. 7960
Author(s):  
Federica Cotecchia ◽  
Francesca Santaloia ◽  
Vito Tagarelli

Nowadays, landslides still cause both deaths and heavy economic losses around the world, despite the development of risk mitigation measures, which are often not effective; this is mainly due to the lack of proper analyses of landslide mechanisms. As such, in order to achieve a decisive advancement for sustainable landslide risk management, our knowledge of the processes that generate landslide phenomena has to be broadened. This is possible only through a multidisciplinary analysis that covers the complexity of landslide mechanisms that is a fundamental part of the design of the mitigation measure. As such, this contribution applies the “stage-wise” methodology, which allows for geo-hydro-mechanical (GHM) interpretations of landslide processes, highlighting the importance of the synergy between geological-geomorphological analysis and hydro-mechanical modeling of the slope processes for successful interpretations of slope instability, the identification of the causes and the prediction of the evolution of the process over time. Two case studies are reported, showing how to apply GHM analyses of landslide mechanisms. After presenting the background methodology, this contribution proposes a research project aimed at the GHM characterization of landslides, soliciting the support of engineers in the selection of the most sustainable and effective mitigation strategies for different classes of landslides. This proposal is made on the assumption that only GHM classification of landslides can provide engineers with guidelines about instability processes which would be useful for the implementation of sustainable and effective landslide risk mitigation strategies.


2020 ◽  
Author(s):  
Jacopo Boaga ◽  
Marcia Phillips ◽  
Jeannette Noetzli ◽  
Anna haberkorn ◽  
Robert Kenner ◽  
...  

<p>The characterization of the active layer (AL) in mountain permafrost is an important part of monitoring climate change effects in periglagical environments and may help to determine potential slope instability. Permafrost affects 25% of the Northern Hemisphere and 17% of the entire Earth. It has been studied for decades both in the polar regions and – starting a few decades later – in high mountain environments. Typical point information from permafrost boreholes can be extended to wider areas by geophysical prospecting and provide information that cannot be detected by thermal observations alone.</p><p>During Summer 2019 we performed several geophysical surveys at permafrost borehole sites in the Swiss Alps. We focused on electrical resistivity tomography (ERT) and Frequency Domain Electro-magnetic techniques (FDEM) to compare the methods and test the applicability of FDEM for active layer characterization, i.e., its thickness and lateral continuity. ERT provides an electrical image of the subsoil and can discern active layer thickness, changes in ground ice and geological features of the subsoil. From a logistic point of view a contactless method such as FDEM would be preferable : i) it can provide electrical properties of the subsoil with no need of physical electrical contact with the soil; ii) it can cover a wider area of exploration compared to ERT, iii) it is faster and data collection is simpler than with ERT due to lighter instruments and less preparation time needed.</p><p>Based on the FDEM surveys at the Swiss permafrost sites we were able to detect the frozen/unfrozen boundary and to achieve results that were in agreement with those obtained from classical ERT and borehole temperature data. The results were promising for future active layer monitoring with the contactless FDEM method.</p>


2018 ◽  
Vol 6 (2) ◽  
pp. 505-523 ◽  
Author(s):  
Simon M. Mudd ◽  
Fiona J. Clubb ◽  
Boris Gailleton ◽  
Martin D. Hurst

Abstract. For over a century, geomorphologists have attempted to unravel information about landscape evolution, and processes that drive it, using river profiles. Many studies have combined new topographic datasets with theoretical models of channel incision to infer erosion rates, identify rock types with different resistance to erosion, and detect potential regions of tectonic activity. The most common metric used to analyse river profile geometry is channel steepness, or ks. However, the calculation of channel steepness requires the normalisation of channel gradient by drainage area. This normalisation requires a power law exponent that is referred to as the channel concavity index. Despite the concavity index being crucial in determining channel steepness, it is challenging to constrain. In this contribution, we compare both slope–area methods for calculating the concavity index and methods based on integrating drainage area along the length of the channel, using so-called “chi” (χ) analysis. We present a new χ-based method which directly compares χ values of tributary nodes to those on the main stem; this method allows us to constrain the concavity index in transient landscapes without assuming a linear relationship between χ and elevation. Patterns of the concavity index have been linked to the ratio of the area and slope exponents of the stream power incision model (m∕n); we therefore construct simple numerical models obeying detachment-limited stream power and test the different methods against simulations with imposed m and n. We find that χ-based methods are better than slope–area methods at reproducing imposed m∕n ratios when our numerical landscapes are subject to either transient uplift or spatially varying uplift and fluvial erodibility. We also test our methods on several real landscapes, including sites with both lithological and structural heterogeneity, to provide examples of the methods' performance and limitations. These methods are made available in a new software package so that other workers can explore how the concavity index varies across diverse landscapes, with the aim to improve our understanding of the physics behind bedrock channel incision.


2018 ◽  
Author(s):  
Siyue Xiao ◽  
Yunheng Ji ◽  
Jian Liu ◽  
Xun Gong

Background Cycas panzhihuaensis L. Zhou & S. Y. Yang (Cycadaceae) is an endangered gymnosperm species endemic in the dry-hot valley of Jinsha River basin from southwest China. Although the wild C. panzhihuaensis population from Panzhihua Cycad Natural Reserve is well protected, other known populations that fall outside the natural reserve may preserve specific genetic resources while face with larger extinction risk because of lacking essential monitoring. Methods In this study, we analyzed the genetic diversity, phylogeographical structure and demographic history of C. panzhihuaensis from seven known locations so far by sequencing three chloroplastic DNA regions (psbA-trnH, psbM-trnD, and trnS-trnG), four single-copy nuclear genes (PHYP, AC5, HSP70, and AAT) from 61 individuals, and eleven microsatellite loci (SSR) from 102 individuals. Results and Discussion We found relative high genetic diversity within populations and high genetic differentiation among the populations of C. panzhihuaensis, which is similar with the other Asian inland cycads. Despite no significant phylogeographical structure was detected, small and unprotected populations possess higher genetic diversity and more unique haplotypes, which deserve due attention. Results of demographic dynamics suggest that human activity is the key factor that leads C. panzhihuaensis to endangered status. Basing on the genetic characterization of C. panzhihuaensis, we proposed several practical guidelines for the conservation of this species, especially for its small populations.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Javed Iqbal ◽  
Xinbin Tu ◽  
Wei Gao

Filling of Xiangjiaba Reservoir Lake in the Southwest China triggered and reactivated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at the right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out to identify the landslide with respect to its surroundings and to find out the slip surface. Boreholes were drilled to find out the subsurface lithology and the depth of failure of Dasha landslide. The in situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using the 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain is relatively steep. The total volume of landslides is about 580×104 m3 with an average thickness of 20 m. Bedrock in the landslide area is composed of Suining Formation of the Jurassic age. The main rock type is silty mudstone with sandstone, and the bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.


Sign in / Sign up

Export Citation Format

Share Document