scholarly journals Soft Elastomeric Capacitor for Angular Rotation Sensing in Steel Components

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7017
Author(s):  
Han Liu ◽  
Simon Laflamme ◽  
Jian Li ◽  
Caroline Bennett ◽  
William N. Collins ◽  
...  

The authors have previously proposed corrugated soft elastomeric capacitors (cSEC) to create ultra compliant scalable strain gauges. The cSEC technology has been successfully demonstrated in engineering and biomechanical applications for in-plane strain measurements. This study extends work on the cSEC to evaluate its performance at measuring angular rotation when installed folded at the junction of two plates. The objective is to characterize the sensor’s electromechanical behavior anticipating applications to the monitoring of welded connections in steel components. To do so, an electromechanical model that maps the cSEC signal to bending strain induced by angular rotation is derived and adjusted using a validated finite element model. Given the difficulty in mapping strain measurements to rotation, an algorithm termed angular rotation index (ARI) is formulated to link measurements to angular rotation directly. Experimental work is conducted on a hollow structural section (HSS) steel specimen equipped with cSECs subjected to compression to generate angular rotations at the corners within the cross-section. Results confirm that the cSEC is capable of tracking angular rotation-induced bending strain linearly, however with accuracy levels significantly lower than found over flat configurations. Nevertheless, measurements were mapped to angular rotations using the ARI, and it was found that the ARI mapped linearly to the angle of rotation, with an accuracy of 0.416∘.

1983 ◽  
Vol 18 (1) ◽  
pp. 77-79 ◽  
Author(s):  
L Lagerkvist ◽  
K-G Sundin ◽  
B Lundberg

Contributions from bending to the evaluated axial strain in an elastic rod are commonly suppressed by forming half the sum of measured surface strains at diametrically opposite positions. A simple method is presented which gives a useful estimation of the bending suppression (the ratio of the bending strain to the absolute value of the evaluated axial strain when a rod is subject to bending only) from (i) optically measured mis-positioning, and (ii) estimated differences between the gauge constants for the two strain gauges. Good agreement is obtained with results obtained from strain measurements on a rod loaded in bending.


The non-uniform stress distribution occurs in a tension member adjacent to a connection, in which all elements of the cross-section are not directly connected. This effect reduces the member’s design strength because the entire cross-section is not fully effective in the critical section’s location. That's why an experimental study has been done to investigate the effect of the weld length on the tension capacity, two specimens (hollow structural sections) have been tested by using Instron 8800 machine with two weld lengths, 46 mm and 56 mm. The 46 mm size is the minimum requirement of the sufficient size of the tension connection depending on United States Steel Standard. The Result proved that there has been too much effect on the connection carrying tension capacity. The result of the 46 mm weld length is about 155 KN and about 180 KN for the 56 mm weld length. While the ABAQUS simulation results were about 168 KN for the 46 mm weld length and about 172 KN for the 56 mm weld length.


1977 ◽  
Vol 12 (1) ◽  
pp. 233-255
Author(s):  
J.F. Sykes ◽  
A.J. Crutcher

Abstract A two-dimensional Galerkin finite element model for flow and contaminant transport in variably saturated porous media is used to analyze the transport of chlorides from a sanitary landfill located in Southern Ontario. A representative cross-section is selected for the analysis. Predicted chloride concentrations are presented for the cross section at various horizon years.


2016 ◽  
Vol 879 ◽  
pp. 274-278 ◽  
Author(s):  
Jun Cao ◽  
Philip Nash

In an earlier study, a 3-D thermomechanical coupled finite element model was built and experimentally validated to investigate the evolution of the thermal residual stresses and distortions in electron beam additive manufactured Ti-6Al-4V build plates. In this study, an investigation using this robust and accurate model was focused on an efficient preheating method, in which the electron beam quickly scanned across the substrate to preheat the build plate prior to the deposition. Various preheat times, beam powers, scan rates, scanning paths and cooling times (between the end of current preheat scan/deposition layer and the beginning of the next preheat scan/deposition layer) were examined, and the maximum distortion along the centerline of the substrate and the maximum longitudinal residual stress along the normal direction on the middle cross-section of the build plate were quantitatively compared. The results show that increasing preheat times and beam powers could effectively reduce both distortion and residual stress for multiple layers/passes components.


Author(s):  
J. Szwedowicz ◽  
S. M. Senn ◽  
R. S. Abhari

Optimum placements of the strain gauges assure reliable vibration measurements of structural components such as rotating blades. Within the framework of cyclic vibration theory, a novel approach has been developed for computation of the optimum gauge positions on tuned bladed discs regarding the determined sensitivity, orthogonality, gradient and distance criteria. The utilized genetic algorithm optimization tool allows for an effective numerical search of suitable solutions of the defined optimization function. A rotating impeller disc represented by a cyclic finite element model demonstrates the application of this method. The present technique can be easily applied to other structural components requiring optimal strain gauge instrumentation.


2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


2018 ◽  
Vol 7 (3) ◽  
pp. 1376
Author(s):  
N Chaitanya ◽  
V Ranga Rao ◽  
M Achyutha Kumar Reddy

The purpose of this paper is to compare the behaviour of composite reinforced concrete square short columns and conventional square short column. Experiments are conducted on four axially loaded column specimens till failure. Among four specimens, two are conventional and remaining two columns are having equal angles as main reinforcement. Short columns are designed using IS 456 2000. The obtained details of main reinforcement are replaced in area wise by equal angle (ISA 2525). The tie reinforcement used to withhold the main reinforcement in position are retained with the same deformed bars. Performance of columns are measured in terms of load carrying capacity, longitudinal strain, stress, crushing modes, strains in each face using strain gauges. Outcome of the experiments are compared and plotted in the form of stress vs strain of the column. A finite element model was developed using Abaqus to simulate the results.  


Author(s):  
Tasneem Pervez ◽  
Omar S. Al-Abri ◽  
Sayyad Z. Qamar ◽  
Asiya M. Al-Busaidi

In the last decade, traditional tube expansion process has found an innovative application in oil and gas well drilling and remediation. The ultimate goal is to replace the conventional telescopic wells to mono-diameter wells with minimum cost, which is still a distant reality. Further to this, large diameters are needed at terminal depths for enhanced production from a single well while keeping the power required for expansion and related costs to a minimum. Progress has been made to realize slim wells by driving a rigid mandrel of a suitable diameter through the tube either mechanically or hydraulically to attain a desirable expansion ratio. This paper presents a finite element model which predicts the drawing force for expansion, the stress field in expanded and pre/post expanded zones, and the energy required for expansion. Through minimization of energy required for expansion, an optimum mandrel configuration i.e. shape, size and angle was obtained which can be used to achieve larger in-situ expansion. It is found that mandrel with elliptical, hemispherical and curved conical shapes have minimum resistance during expansion as compared to the widely used circular cross section mandrel with a cone angle of 10°. However, further manipulation of shape parameters of the circular cross section mandrel revealed an improved efficiency. The drawing force required for expansion reduces by 7% to 10% having minimum dissipated energy during expansion. It is also found that these cones yield less reduction in tube thickness after expansion, which results in higher post-expansion collapse strength. In addition, rotating a mandrel further reduces the energy required for expansion by 7%.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


Sign in / Sign up

Export Citation Format

Share Document