scholarly journals Meteo-Hydrological Sensors within the Lake Maggiore Catchment: System Establishment, Functioning and Data Validation

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8300
Author(s):  
Marzia Ciampittiello ◽  
Dario Manca ◽  
Claudia Dresti ◽  
Stefano Grisoni ◽  
Andrea Lami ◽  
...  

Climate change and human activities have a strong impact on lakes and their catchments, so to understand ongoing processes it is fundamental to monitor environmental variables with a spatially well-distributed and high frequency network and efficiently share data. An effective sharing and interoperability of environmental information between technician and end-user fosters an in-depth knowledge of the territory and its critical environmental issues. In this paper, we present the approaches and the results obtained during the PITAGORA project (Interoperable Technological Platform for Acquisition, Management and Organization of Environmental data, related to the lake basin). PITAGORA was aimed at developing both instruments and data management, including pre-processing and quality control of raw data to ensure that data are findable, accessible, interoperable, and reusable (FAIR principles). The main results show that the developed instrumentation is low-cost, easily implementable and reliable, and can be applied to the measurement of diverse environmental parameters such as meteorological, hydrological, physico-chemical, and geological. The flexibility of the solutions proposed make our system adaptable to different monitoring purposes, research, management, and civil protection. The real time access to environmental information can improve management of a territory and ecosystems, safety of the population, and sustainable socio-economic development.

2019 ◽  
Vol 1 (1) ◽  
pp. 90-93
Author(s):  
Tan Thanh Nguyen ◽  
Duy Khanh Nguyen

Robots imitating spider’s moving have many advantages such as flexible movement, high stability, diversity in movements performed, especially in terrain  crossing, in military reconnaissance, in surveying and collecting environmental data in dangerous areas,.... In this article  with the main objective is to exploit multiple control methods to support applications of a spider robot with low-cost, a spider robot with 6 legs and 18 joints was designed. The ESPWROOM-32 module (ESP32-D0WDQ6 chip) and MIT App Inventor were used as the main tools for conducting this research. As a result, the robot is controlled via Bluetooth and Wifi to move, making some actions by self-written software running on the Android operating system. In addition, the robot has the capacity of self-propelled to avoid simple obstacles and send some environmental parameters to the software, including obstacles distance, humidity and temperature.


2021 ◽  
Vol 13 (11) ◽  
pp. 5908
Author(s):  
Faris A. Almalki ◽  
Ben Othman Soufiene ◽  
Saeed H. Alsamhi ◽  
Hedi Sakli

When integrating the Internet of Things (IoT) with Unmanned Aerial Vehicles (UAVs) occurred, tens of applications including smart agriculture have emerged to offer innovative solutions to modernize the farming sector. This paper aims to present a low-cost platform for comprehensive environmental parameter monitoring using flying IoT. This platform is deployed and tested in a real scenario on a farm in Medenine, Tunisia, in the period of March 2020 to March 2021. The experimental work fulfills the requirements of automated and real-time monitoring of the environmental parameters using both under- and aboveground sensors. These IoT sensors are on a farm collecting vast amounts of environmental data, where it is sent to ground gateways every 1 h, after which the obtained data is collected and transmitted by a drone to the cloud for storage and analysis every 12 h. This low-cost platform can help farmers, governmental, or manufacturers to predict environmental data over the geographically large farm field, which leads to enhancement in crop productivity and farm management in a cost-effective, and timely manner. Obtained experimental results infer that automated and human-made sets of actions can be applied and/or suggested, due to the innovative integration between IoT sensors with the drone. These smart actions help in precision agriculture, which, in turn, intensely boost crop productivity, saving natural resources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Kwan Lim ◽  
Oh Joo Kweon ◽  
Hye Ryoun Kim ◽  
Tae-Hyoung Kim ◽  
Mi-Kyung Lee

AbstractCorona virus disease 2019 (COVID-19) has been declared a global pandemic and is a major public health concern worldwide. In this study, we aimed to determine the role of environmental factors, such as climate and air pollutants, in the transmission of COVID-19 in the Republic of Korea. We collected epidemiological and environmental data from two regions of the Republic of Korea, namely Seoul metropolitan region (SMR) and Daegu-Gyeongbuk region (DGR) from February 2020 to July 2020. The data was then analyzed to identify correlations between each environmental factor with confirmed daily COVID-19 cases. Among the various environmental parameters, the duration of sunshine and ozone level were found to positively correlate with COVID-19 cases in both regions. However, the association of temperature variables with COVID-19 transmission revealed contradictory results when comparing the data from SMR and DGR. Moreover, statistical bias may have arisen due to an extensive epidemiological investigation and altered socio-behaviors that occurred in response to a COVID-19 outbreak. Nevertheless, our results suggest that various environmental factors may play a role in COVID-19 transmission.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1202
Author(s):  
Miguel Tradacete ◽  
Carlos Santos ◽  
José A. Jiménez ◽  
Fco Javier Rodríguez ◽  
Pedro Martín ◽  
...  

This paper describes a practical approach to the transformation of Base Transceiver Stations (BTSs) into scalable and controllable DC Microgrids in which an energy management system (EMS) is developed to maximize the economic benefit. The EMS strategy focuses on efficiently managing a Battery Energy Storage System (BESS) along with photovoltaic (PV) energy generation, and non-critical load-shedding. The EMS collects data such as real-time energy consumption and generation, and environmental parameters such as temperature, wind speed and irradiance, using a smart sensing strategy whereby measurements can be recorded and computing can be performed both locally and in the cloud. Within the Spanish electricity market and applying a two-tariff pricing, annual savings per installed battery power of 16.8 euros/kW are achieved. The system has the advantage that it can be applied to both new and existing installations, providing a two-way connection to the electricity grid, PV generation, smart measurement systems and the necessary management software. All these functions are integrated in a flexible and low cost HW/SW architecture. Finally, the whole system is validated through real tests carried out on a pilot plant and under different weather conditions.


2015 ◽  
Vol 6 ◽  
pp. 1016-1055 ◽  
Author(s):  
Philipp Adelhelm ◽  
Pascal Hartmann ◽  
Conrad L Bender ◽  
Martin Busche ◽  
Christine Eufinger ◽  
...  

Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.


Author(s):  
L. Marek ◽  
M. Campbell ◽  
M. Epton ◽  
M. Storer ◽  
S. Kingham

The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD), which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor’s care. By learning more about patients’ movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT) air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.


2020 ◽  
Author(s):  
Achim J. Herrmann ◽  
Michelle M. Gehringer

1AbstractThe handling of oxygen sensitive samples and growth of obligate anaerobic organisms requires the stringent exclusion of oxygen, which is omnipresent in our normal atmospheric environment. Anaerobic workstations (aka. Glove boxes) enable the handling of oxygen sensitive samples during complex procedures, or the long-term incubation of anaerobic organisms. Depending on the application requirements, commercial workstations can cost up to 60.000 €. Here we present the complete build instructions for a highly adaptive, Arduino based, anaerobic workstation for microbial cultivation and sample handling, with features normally found only in high cost commercial solutions. This build can automatically regulate humidity, H2 levels (as oxygen reductant), log the environmental data and purge the airlock. It is built as compact as possible to allow it to fit into regular growth chambers for full environmental control. In our experiments, oxygen levels during the continuous growth of oxygen producing cyanobacteria, stayed under 0.03 % for 21 days without needing user intervention. The modular Arduino controller allows for the easy incorporation of additional regulation parameters, such as CO2 concentration or air pressure. This paper provides researchers with a low cost, entry level workstation for anaerobic sample handling with the flexibility to match their specific experimental needs.Specifications table[please fill in right-hand column of the table below]


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 142
Author(s):  
Liam C. Dickson ◽  
Kostas A. Katselidis ◽  
Christophe Eizaguirre ◽  
Gail Schofield

Temperature is often used to infer how climate influences wildlife distributions; yet, other parameters also contribute, separately and combined, with effects varying across geographical scales. Here, we used an unoccupied aircraft system to explore how environmental parameters affect the regional distribution of the terrestrial and marine breeding habitats of threatened loggerhead sea turtles (Caretta caretta). Surveys spanned four years and ~620 km coastline of western Greece, encompassing low (<10 nests/km) to high (100–500 nests/km) density nesting areas. We recorded 2395 tracks left by turtles on beaches and 1928 turtles occupying waters adjacent to these beaches. Variation in beach track and inwater turtle densities was explained by temperature, offshore prevailing wind, and physical marine and terrestrial factors combined. The highest beach-track densities (400 tracks/km) occurred on beaches with steep slopes and higher sand temperatures, sheltered from prevailing offshore winds. The highest inwater turtle densities (270 turtles/km) occurred over submerged sandbanks, with warmer sea temperatures associated with offshore wind. Most turtles (90%) occurred over nearshore submerged sandbanks within 10 km of beaches supporting the highest track densities, showing the strong linkage between optimal marine and terrestrial environments for breeding. Our findings demonstrate the utility of UASs in surveying marine megafauna and environmental data at large scales and the importance of integrating multiple factors in climate change models to predict species distributions.


Sign in / Sign up

Export Citation Format

Share Document