scholarly journals A New Inference Approach for Type-II Generalized Birnbaum-Saunders Distribution

Stats ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 148-163
Author(s):  
Naijun Sha

The Birnbaum-Saunders (BS) distribution, with its generalizations, has been successfully applied in a wide variety of fields. One generalization, type-II generalized BS (denoted as GBS-II), has been developed and attracted considerable attention in recent years. In this article, we propose a new simple and convenient procedure of inference approach for GBS-II distribution. An extensive simulation study is carried out to assess performance of the methods under various settings of parameter values with different sample sizes. Real data are analyzed for illustrative purposes to display the efficiency of the proposed method.

2021 ◽  
Author(s):  
Jakob Raymaekers ◽  
Peter J. Rousseeuw

AbstractMany real data sets contain numerical features (variables) whose distribution is far from normal (Gaussian). Instead, their distribution is often skewed. In order to handle such data it is customary to preprocess the variables to make them more normal. The Box–Cox and Yeo–Johnson transformations are well-known tools for this. However, the standard maximum likelihood estimator of their transformation parameter is highly sensitive to outliers, and will often try to move outliers inward at the expense of the normality of the central part of the data. We propose a modification of these transformations as well as an estimator of the transformation parameter that is robust to outliers, so the transformed data can be approximately normal in the center and a few outliers may deviate from it. It compares favorably to existing techniques in an extensive simulation study and on real data.


Author(s):  
Paula Saavedra-Nieves ◽  
Rosa M. Crujeiras

AbstractHighest density regions (HDRs) are defined as level sets containing sample points of relatively high density. Although Euclidean HDR estimation from a random sample, generated from the underlying density, has been widely considered in the statistical literature, this problem has not been contemplated for directional data yet. In this work, directional HDRs are formally defined and plug-in estimators based on kernel smoothing and associated confidence regions are proposed. We also provide a new suitable bootstrap bandwidth selector for plug-in HDRs estimation based on the minimization of an error criteria that involves the Hausdorff distance between the boundaries of the theoretical and estimated HDRs. An extensive simulation study shows the performance of the resulting estimator for the circle and for the sphere. The methodology is applied to analyze two real data sets in animal orientation and seismology.


Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Marouane Mahrouf ◽  
Adnane Boukhouima ◽  
Houssine Zine ◽  
El Mehdi Lotfi ◽  
Delfim F. M. Torres ◽  
...  

The novel coronavirus disease (COVID-19) pneumonia has posed a great threat to the world recent months by causing many deaths and enormous economic damage worldwide. The first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of reported cases has increased day by day. In this work, we extend the well-known SIR compartmental model to deterministic and stochastic time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco and to assess the potential role of multiple preventive measures and strategies imposed by Moroccan authorities. The main features of the work include the well-posedness of the models and conditions under which the COVID-19 may become extinct or persist in the population. Parameter values have been estimated from real data and numerical simulations are presented for forecasting the COVID-19 spreading as well as verification of theoretical results.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Erol Egrioglu ◽  
Cagdas Hakan Aladag ◽  
Cem Kadilar

Seasonal Autoregressive Fractionally Integrated Moving Average (SARFIMA) models are used in the analysis of seasonal long memory-dependent time series. Two methods, which are conditional sum of squares (CSS) and two-staged methods introduced by Hosking (1984), are proposed to estimate the parameters of SARFIMA models. However, no simulation study has been conducted in the literature. Therefore, it is not known how these methods behave under different parameter settings and sample sizes in SARFIMA models. The aim of this study is to show the behavior of these methods by a simulation study. According to results of the simulation, advantages and disadvantages of both methods under different parameter settings and sample sizes are discussed by comparing the root mean square error (RMSE) obtained by the CSS and two-staged methods. As a result of the comparison, it is seen that CSS method produces better results than those obtained from the two-staged method.


2014 ◽  
Vol 22 (04) ◽  
pp. 533-554 ◽  
Author(s):  
JING NIE ◽  
GUI-QUAN SUN ◽  
XIANG-DONG SUN ◽  
JUAN ZHANG ◽  
NAN WANG ◽  
...  

Dairy cattle brucellosis is a chronic bacterial disease, which is caused by Brucella abortus and mainly characterized by abortion in dairy cattle. With the rapid development of breeding industry of milk cows in China, the infectious cases of dairy cattle brucellosis show an increasing trend. Particularly in Jilin province, the annual number of the positive cases of dairy cattle was only 3 cows in 1987, and went up to 168 cows in 2005. Based on the situation of the brucellosis infection in Jilin province, we propose an Susceptible-Exposed-Infected-Virus (SEIV) dynamical model with outside transferred amount to describe the transmission of brucellosis amongst dairy cattle in this paper. We calculate the basic reproduction number R0 and prove that the equilibria are globally stable. Moreover, using the real data of nearly 20 years in Jilin province, we estimate the parameter values in the system. As a result, we can predict the number of infections as time increases. According to the prediction for the next 30 years, we can conclude that the disease will persist if we just take existing measures. If culling, sterilizing and decreasing the number of outer importing are used together, dairy cattle brucellosis will be well controlled.


2021 ◽  
Vol 9 (1) ◽  
pp. 190-210
Author(s):  
Arvid Sjölander ◽  
Ola Hössjer

Abstract Unmeasured confounding is an important threat to the validity of observational studies. A common way to deal with unmeasured confounding is to compute bounds for the causal effect of interest, that is, a range of values that is guaranteed to include the true effect, given the observed data. Recently, bounds have been proposed that are based on sensitivity parameters, which quantify the degree of unmeasured confounding on the risk ratio scale. These bounds can be used to compute an E-value, that is, the degree of confounding required to explain away an observed association, on the risk ratio scale. We complement and extend this previous work by deriving analogous bounds, based on sensitivity parameters on the risk difference scale. We show that our bounds can also be used to compute an E-value, on the risk difference scale. We compare our novel bounds with previous bounds through a real data example and a simulation study.


2017 ◽  
Vol 40 (2) ◽  
pp. 205-221 ◽  
Author(s):  
Shahryar Mirzaei ◽  
Gholam Reza Mohtashami Borzadaran ◽  
Mohammad Amini

In this paper, we consider two well-known methods for analysis of the Gini index, which are U-statistics and linearization for some incomedistributions. In addition, we evaluate two different methods for some properties of their proposed estimators. Also, we compare two methods with resampling techniques in approximating some properties of the Gini index. A simulation study shows that the linearization method performs 'well' compared to the Gini estimator based on U-statistics. A brief study on real data supports our findings.


2021 ◽  
Author(s):  
Monsurul Hoq ◽  
Susan Donath ◽  
Paul Monagle ◽  
John Carlin

Abstract Background: Reference intervals (RIs), which are used as an assessment tool in laboratory medicine, change with age for most biomarkers in children. Addressing this, RIs that vary continuously with age have been developed using a range of curve-fitting approaches. The choice of statistical method may be important as different methods may produce substantially different RIs. Hence, we developed a simulation study to investigate the performance of statistical methods for estimating continuous paediatric RIs.Methods: We compared four methods for estimating age-varying RIs. These were Cole’s LMS, the Generalised Additive Model for Location Scale and Shape (GAMLSS), Royston’s method based on fractional polynomials and exponential transformation, and a new method applying quantile regression using power variables in age selected by fractional polynomial regression for the mean. Data were generated using hypothetical true curves based on five biomarkers with varying complexity of association with age, i.e. linear or nonlinear, constant or nonconstant variation across age, and for four sample sizes (100, 200, 400 and 1000). Root mean square error (RMSE) was used as the primary performance measure for comparison. Results: Regression-based parametric methods performed better in most scenarios. Royston’s and the new method performed consistently well in all scenarios for sample sizes of at least 400, while the new method had the smallest average RMSE in scenarios with nonconstant variation across age. Conclusions: We recommend methods based on flexible parametric models for estimating continuous paediatric RIs, irrespective of the complexity of the association between biomarkers and age, for at least 400 samples.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244316
Author(s):  
Mukhtar M. Salah ◽  
Essam A. Ahmed ◽  
Ziyad A. Alhussain ◽  
Hanan Haj Ahmed ◽  
M. El-Morshedy ◽  
...  

This paper describes a method for computing estimates for the location parameter μ > 0 and scale parameter λ > 0 with fixed shape parameter α of the alpha power exponential distribution (APED) under type-II hybrid censored (T-IIHC) samples. We compute the maximum likelihood estimations (MLEs) of (μ, λ) by applying the Newton-Raphson method (NRM) and expectation maximization algorithm (EMA). In addition, the estimate hazard functions and reliability are evaluated by applying the invariance property of MLEs. We calculate the Fisher information matrix (FIM) by applying the missing information rule, which is important in finding the asymptotic confidence interval. Finally, the different proposed estimation methods are compared in simulation studies. A simulation example and real data example are analyzed to illustrate our estimation methods.


Sign in / Sign up

Export Citation Format

Share Document