scholarly journals Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review

2019 ◽  
Vol 11 (2) ◽  
pp. 537 ◽  
Author(s):  
Ali Naqi ◽  
Jeong Jang

The cement industry is facing numerous challenges in the 21st century due to depleting natural fuel resources, shortage of raw materials, exponentially increasing cement demand and climate linked environmental concerns. Every tonne of ordinary Portland cement (OPC) produced releases an equivalent amount of carbon dioxide to the atmosphere. In this regard, cement manufactured from locally available minerals and industrial wastes that can be blended with OPC as substitute, or full replacement with novel clinkers to reduce the energy requirements is strongly desirable. Reduction in energy consumption and carbon emissions during cement manufacturing can be achieved by introducing alternative cements. The potential of alternative cements as a replacement of conventional OPC can only be fully realized through detailed investigation of binder properties with modern technologies. Seven prominent alternative cement types are considered in this study and their current position compared to OPC has been discussed. The study provides a comprehensive analysis of options for future cements, and an up-to-date summary of the different alternative fuels and binders that can be used in cement production to mitigate carbon dioxide emissions. In addition, the practicalities and benefits of producing the low-cost materials to meet the increasing cement demand are discussed.

2015 ◽  
Vol 787 ◽  
pp. 142-146
Author(s):  
Siva Teja Chopperla ◽  
Rajeswari Jupalli ◽  
Deepak Kanraj ◽  
A. Bahurudeen ◽  
M.K. Haneefa ◽  
...  

The consumption of Portland cement for the production of concrete is rapidly increasing because of the remarkable growth in the construction worldwide. Cement production is an energy intensive process. The energy consumption by the cement industry is estimated to be about 5% of the total global industrial energy consumption. Manufacturing process of cement consumes enormous quantities of raw materials from limited natural resources at a high rate and leads to their depletion. Due to the dominant use of carbon intensive fuels such as coal, the cement industry is a major emitter of carbon dioxide and other air pollutants. The cement industry contributes about 6 % of global carbon dioxide emissions which is the primary source of global warming. In addition to carbon dioxide emissions, significant amount of nitrogen oxides, sulphur dioxide, carbon monoxide, hydrocarbons and volatile organic compounds are emitted during cement manufacturing and causes severe environmental issues. In this regard, effective control techniques for reduction in carbon dioxide emissions from modern cement industry and an efficient procedure to achieve sustainable cement manufacturing process are discussed in this paper.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Togar W. S. Panjaitan ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Around 600 Mt carbon dioxide equivalents (CO2e) of anthropogenic greenhouse gases (GHG) emission originates from energy production and consumption in Indonesia annually. Of this output, 40 Mt CO2e comes from cement production. This makes the cement industry a key sector to target in Indonesia’s quest to reduce its emissions by 26% by 2020. Substantial opportunities exist for the industry to reduce emissions, mainly through clinker substitution, alternative fuels, and the modernization of kiln technologies. However, most of these abatement options are capital intensive and considered as noncore business. Due to this, the private sector is unlikely to voluntarily invest in emission reduction unless it saves money, improves revenue, enhances the strategic position of the firm, or unless governments provide incentives or force adoption through regulatory and policy controls. In this study, we review the profile of the Indonesian cement industry and assess the carbon management and climate policy actions available to reduce emissions. The case highlights opportunities for improved carbon management in emission-intensive industries in developing countries.


2021 ◽  
Vol 13 (23) ◽  
pp. 13120
Author(s):  
Fatemeh Soltanzadeh ◽  
Ali E. Behbahani ◽  
Eduardo N. B. Pereira ◽  
Carlos A. Teixeira

The adverse consequences of producing ordinary Portland cement (OPC) on the environment have introduced cement production as the fourth largest source of anthropogenic carbon emissions after petroleum, coal, and natural gas. Managing and reducing the environmental concerns regarding the impacts of cement production on the environment, namely the depletion of non-renewable fuel resources, consumption of natural raw materials, and releasing huge amounts of CO2 into the atmosphere should be, therefore, one of the key priorities of the cement industry. Application of locally available minerals and wastes that can be blended with OPC as a substitute could considerably reduce the environmental impact. The present study evaluates the potentiality of waste seashell to be used as an additive in the production of blended cement through a modified life cycle approach integrating environmental and mechanical performances. In this regard, 34 cements consisting of different blends of OPC, seashell powder (within the range of 4–30% by OPC mass), and natural pozzolan (up to 30% by OPC mass) were tested to identify the optimal dosage of OPC substitution. Environmental impacts of the cements were assessed through life-cycle analysis. The possibility of mitigating the carbon dioxide emissions in the production of cements, with similar mechanical performance compared to that of OPC, was evaluated by considering both the mechanical and environmental results. The outcome of this study introduced more environment-friendly and sustainable options for future cements.


2011 ◽  
Vol 233-235 ◽  
pp. 412-415 ◽  
Author(s):  
Li Xia Hao ◽  
Feng Qing Zhao ◽  
Peng Xiang Zhao

Cement industry bear the brunt in the tide of resisting global warming because of large carbon dioxide emission. Five low-carbon measures and implementation approach to Chinese cement industry was put forward: Increasing industrial concentration degree and developing new dry process cement; Processing waste in cement kilns and reducing the use of raw materials and fuels; Increasing the amount of admixture in cement; Producing cement from calcium oxide content solid waste; Taking energy-saving measures such as cogeneration and grinding technology.


2015 ◽  
Vol 768 ◽  
pp. 679-686 ◽  
Author(s):  
Juan Xu ◽  
Shao Feng Sun ◽  
Kårehelge Karstensen ◽  
Da Hai Yan ◽  
Zheng Peng

As China develops its economy, hazardous waste generation is expected to increase rapidly. Recovery and recycling, i.e. co-processing of Alternative Fuels and Raw materials (AFRs) and treatment of hazardous waste in energy-and resource-intensive industries such as the cement industry seems to be an supplementary option to conventional technologies which can increase the overall waste management capacity in China significantly. With the largest cement production in the world, the industry can save significant amounts of non-renewable coal and raw materials by substitution with wastes which needs treatment. However, co-processing requires appropriate regulations and policies to support its development and safe and sound implementation.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Herliati Rahman ◽  
Akhirudin Salasa

Currently, the use of alternative fuels and raw materials (AFR) in the cement industry is very attractive. This is driven by demands for environmental sustainability and the efficiency of fuel and raw material costs. One of the materials that can be used as AFR is sludge oil. However, it needs to be ensured that the chlorine content in the sludge oil does not exceed the threshold so that it does not have a negative impact during the cement production process. It is known that if the chlorine content is more than the threshold, it can cause blocking or clogging of the separator and the kiln. This study aims to determine the performance of the Jena Multi EA 4000 instrument in determining the chlorine content in sludge oil quickly and accurately. Analytic Jena Multi EA 4000 is an Atomic Absorption Spectrometers (AAS) instrument that can be used for analysis of samples in the form of solids or slurries containing chlorine. As validation of the resulting analysis, the wet method is used, which as usual, to determine chlorine levels. From the statistic analysis, namely the F-test and T-test, We found that F-count equal to 0.0080 and F-table equal to 4.2839. it shows that F-count < F-table, indicating the difference in the variance of the two methods H0: s12 = s22 is accepted because there is no difference to the variability of these two tests and the value of T-count = -3.9717 and T-table = 2.1788 so that T-count <T-table is accepted because there is no difference in the average accuracy of the two methods H0: M1 = M2.  


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
MARIJA HADŽI-NIKOLOVA ◽  
DEJAN MIRAKOVSKI ◽  
NIKOLINKA DONEVA ◽  
NATAŠA BAKRESKA

The main environmental issues associated with cement production are the consumption of raw materials, energy use and emissions in the air. Noise emissions occur throughout the whole cement manufacturing process - from preparing and processing raw materials, from the clinker burning and cement production process, from material storage as well as from the dispatch and shipping of the final products. The heavy machinery and large fans used in the cement manufacturing process can give rise to noise emissions. Cement Plants are required to comply with standards for reduction in line with national legislation, and to conduct measurements and perform noise surveys. Having this in mind, A TITAN Group Usje Cement Plant in Skopje, following their strong commitment to high environmental performance and Corporate Social Responsibility and Sustainable Development Policy in 2013-2014 have engaged an AMBICON Lab (Faculty of Natural and Technical Sciences) from Stip, to conduct a Noise Control Study in order to identify noise sources within cement plant and marl quarry, determine their impacts on nearby residents and develop noise control/protection strategies. During the past three years, the Usje Cement plant has implemented most of the noise control measures proposed in this Study. Also, a follow-up study during 2016-2017 was conducted in order to assess the effectiveness of measures taken. This paper presents the outcomes of noise reduction measures taken. Keywords: noise, cement industry, process management, measures, environment


Author(s):  
Peter Styring ◽  
George RM Dowson

The restructuring of the economy post-COVID 19 coupled to the drive towards Net Zero carbon dioxide emissions means we must rethink the way we use transport fuels. Fossil-carbon based fuels are ubiquitous in the transport sector, however there are alternative synthetic fuels that could be used as drop-in or replacement fuels. The main hurdles to achieving a transition to synthetic fuels are the limited availability of low-cost carbon dioxide at an appropriate purity, the availability of renewable hydrogen and, in the case of hydrocarbons, catalysts that are selective for small and particular chain lengths. In this paper we will consider some of the alternative fuels and methods that could reduce cost, both economically and environmentally. We recommend that increased effort in the rapid development of these fuels should be a priority in order to accelerate the possibility of achieving Net Zero without costly infrastructure changes. As ground transportation offers a more straightforward approach legislatively, we will look at oxygenated organic fuels as an alternative drop-in replacement for hydrocarbons.


2021 ◽  
Vol 2045 (1) ◽  
pp. 012031
Author(s):  
Y J Liu ◽  
J R Fang ◽  
Y W Kang ◽  
L Wang ◽  
X P An

Abstract For the purposes of simplifying the calculation task, adjusting production processes in time and solving the inconsistent requirements for carbon emissions, this paper investigates the calculation methods of carbon dioxide emissions from cement production, for example IPCC, WBCSD-CSI, MEE-CBMA, CNIS and BNU. Then a simplification and intuitive method is proposed. Based on the intuitive method, CO2 emission of 21 cement plants in China are calculated and analyzed, of which the error between the calculation results and those obtained by HJ 2519-2012 is less than 0.5%. About the carbon reduction technology in cement industry, there is limited reduction space that rely on energy efficiency improvements and clinker substitution. The technology of alternative fuels still needs to be further expanded. China has operated the first demonstration production line of CCUS technology at the Anhui Baimashan Conch cement plant with a capacity of 20,000 tons/year of industrial-grade liquid CO2 products and 30,000 tons/year of food-grade liquid CO2 products. Alternative raw material technology may be one developing direction to cut carbon emission; only 6.18% of steel slag was added to the raw meal at a 2500t/d production line, CO2 emission from process emissions were reduced by nearly 10%.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
S. P. Dunuweera ◽  
R. M. G. Rajapakse

We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.


Sign in / Sign up

Export Citation Format

Share Document