scholarly journals Experimental Study on the Effects of a Vertical Jet Impinging on Soft Bottom Sediments

2020 ◽  
Vol 12 (9) ◽  
pp. 3775 ◽  
Author(s):  
Wei Fan ◽  
Weicheng Bao ◽  
Yong Cai ◽  
Canbo Xiao ◽  
Zhujun Zhang ◽  
...  

Artificial downwelling, which is an ecological engineering method, potentially alleviates bottom hypoxia by bringing oxygen-rich surface water down below the pycnocline. However, the downward flow is likely to disturb sediments (or induce sediment resuspension) when reaching the bottom and then have unwanted side effects on the local ecosystem. To evaluate this, our paper presents a theoretical model and experimental data for the sediment resuspension caused by artificial downwelling. The theoretical model considers the critical conditions for sediment resuspension and the scour volume with the downwelling flow disturbing sediment. Experiments with altered downwelling flow speeds, discharge positions relative to the bottom, and particle sizes of sediment were conducted in a water tank, and the results were consistent with our theoretical model. The results show that the critical Froude number (hereinafter Fr) for sediment resuspension is 0.5. The prevention of sediment resuspension requires the downwelling flow speed and the discharge position to be adjusted so that Fr < 0.5; otherwise a portion of sediment is released into the water and its volume can be predicted by the derived formulation based on the Shields theory. Furthermore, sediment resuspension has side effects, such as a water turbidity increase and phosphorus release, the magnitudes of which are discussed with respect to engineering parameters. Further study will focus on field experiments of artificial downwelling and its environmental impacts.

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Xiang He ◽  
Sijia Wang ◽  
Bingjian Zhang

Dew is a common but important phenomenon. Though water is previously considered to be a threat to earthen heritage sites, artificial dew is showing potential in relic preservation. A model of dew prediction on earthen sites will be essential for developing preventive protection methods, but studies of dew formation processes on relics are limited. In this study, a two parameter model is proposed. It makes approximations according to the features of earthen heritage sites, assuming that a thin and steady air layer exists close to the air–solid interface. This semi-theoretical model was based on calculations of the mass transfer process in the air layer, and was validated by simulations of laboratory experiments (R > 0.9) as well as field experiments. Additionally, a numerical simulation, performed by the commercial software COMSOL, confirmed that the difference between fitting parameter δ and the thickness of assumed mass transfer field was not significant. This model will be helpful in developing automatic environmental control systems for stabilizing water and soluble salts, thus enhancing preventive protection of earthen heritage sites.


2015 ◽  
Author(s):  
Lindsay D Waldrop ◽  
Laura A. Miller

Valveless, tubular pumps are widespread in the animal kingdom, but the mechanism by which these pumps generate fluid flow are often in dispute. Where the pumping mechanism of many organs was once described as peristalsis, other mechanisms, such as dynamic suction pumping, have been suggested as possible alternative mechanisms. Peristalsis is often evaluated using criteria established in a technical definition for mechanical pumps, but this definition is based on a small-amplitude, long-wave approximation which biological pumps often violate. In this study, we use a direct numerical simulation of large-amplitude, short-wave peristalsis to investigate the relationships between fluid flow, compression frequency, compression wave speed, and tube occlusion. We also explore how the flows produced differ from the criteria outlined in the technical definition of peristalsis. We find that many of the technical criteria are violated by our model: fluid flow speeds produced by peristalsis are greater than the speeds of the compression wave; fluid flow is pulsatile; and flow speed have a non-linear relationship with compression frequency when compression wave speed is held constant. We suggest that the technical definition is inappropriate for evaluating peristalsis as a pumping mechanism for biological pumps because they too frequently violate the assumptions inherent in these criteria. Instead, we recommend that a simpler, more inclusive definition be used for assessing peristalsis as a pumping mechanism based on the presence of non-stationary compression sites that propagate uni-directionally along a tube without the need for a structurally fixed flow direction.


Author(s):  
David C. Deisenroth ◽  
Jorge Neira ◽  
Jordan Weaver ◽  
Ho Yeung

Abstract In laser powder bed fusion metal additive manufacturing, insufficient shield gas flow allows accumulation of condensate and ejecta above the build plane and in the beam path. These process byproducts are associated with beam obstruction, attenuation, and thermal lensing, which then lead to lack of fusion and other defects. Furthermore, lack of gas flow can allow excessive amounts of ejecta to redeposit onto the build surface or powder bed, causing further part defects. The current investigation was a preliminary study on how gas flow velocity and direction affect laser delivery to a bare substrate of Nickel Alloy 625 (IN625) in the National Institute of Standards and Technology (NIST) Additive Manufacturing Metrology Testbed (AMMT). Melt tracks were formed under several gas flow speeds, gas flow directions, and energy densities. The tracks were then cross-sectioned and measured. The melt track aspect ratio and aspect ratio coefficient of variation (CV) were reported as a function of gas flow speed and direction. It was found that a mean gas flow velocity of 6.7 m/s from a nozzle 6.35 mm in diameter was sufficient to reduce meltpool aspect ratio CV to less than 15 %. Real-time inline hotspot area and its CV were evaluated as a process monitoring signature for identifying poor laser delivery due to inadequate gas flow. It was found that inline hotspot size could be used to distinguish between conduction mode and transition mode processes, but became diminishingly sensitive as applied laser energy density increased toward keyhole mode. Increased hotspot size CV (associated with inadequate gas flow) was associated with an increased meltpool aspect ratio CV. Finally, it was found that use of the inline hotspot CV showed a bias toward higher CV values when the laser was scanned nominally toward the gas flow, which indicates that this bias must be considered in order to use hotspot area CV as a process monitoring signature. This study concludes that gas flow speed and direction have important ramifications for both laser delivery and process monitoring.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Haipeng Zhang ◽  
Sangjin Ryu

Abstract Various methods have been developed to generate monodisperse drops of a dispersed phase (DP) liquid in an immiscible continuous phase (CP) liquid, which include the membrane emulsification method and the microfluidic drop generation. This study proposes an easy-to-adopt drop generation method using cross-flow: a DP liquid is injected through a stationary vertical syringe needle into a CP liquid rotating in rigid body motion. The developed method was tested and characterized using de-ionized water as the DP liquid and mineral oil as the CP liquid. Drops were generated mainly either in the dripping mode or the jetting mode, and the former resulted in higher monodispersity. Smaller drops were generated when a thinner syringe needle was used, the average flow speed of the DP liquid through the needle was decreased, or the linear flow speed of the CP liquid at the needle location was increased. Especially, the power–law relationship was observed between the drop diameter and the flow speeds, and the dripping-to-jetting transition (DJT) was observed when the Weber number of the DP liquid was about 5.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T123-T139
Author(s):  
Bence Solymosi ◽  
Nathalie Favretto-Cristini ◽  
Vadim Monteiller ◽  
Paul Cristini ◽  
Bjørn Ursin ◽  
...  

Laboratory experiments have been recently reintroduced into the ideas-to-applications pipeline for geophysical applications. Benefiting from recent technological advances, we believe that in the coming years, laboratory experiments can play a major role in supporting field experiments and numerical modeling, to explore some of the current challenges of seismic imaging in terms of, for instance, acquisition design or benchmarking of new imaging techniques at a low cost and in an agile way. But having confidence in the quality and accuracy of the experimental data obtained in a complex configuration, which mimics at a reduced scale a real geologic environment, is an essential prerequisite. This requires a robust framework regardless of the configuration studied. Our goal is to provide a global overview of this framework in the context of offshore seismics. To illustrate it, a reduced-scale model is used to represent a 3D complex-shaped salt body buried in sedimentary layers with curved surfaces. Zero-offset and offset reflection data are collected in a water tank, using a conventional pulse-echo technique. Then, a cross-validation approach is applied, which allows us, through comparison between experimental data and the numerical simulation, to point out some necessary future improvements of the laboratory setup to increase the accuracy of the experimental data, and the limitations of the numerical implementation that must also be tackled. Due to this approach, a hierarchical list of points can be collected, to which particular attention should be paid to make laboratory experiments an efficient tool in seismic exploration. Finally, the quality of the complex reduced-scale model and the global framework is successfully validated by applying reverse time migration to the laboratory data.


2019 ◽  
Vol 874 ◽  
pp. 526-547 ◽  
Author(s):  
Boyu Fan ◽  
Cecilia Huertas-Cerdeira ◽  
Julia Cossé ◽  
John E. Sader ◽  
Morteza Gharib

The stability of a cantilevered elastic sheet in a uniform flow has been studied extensively due to its importance in engineering and its prevalence in natural structures. Varying the flow speed can give rise to a range of dynamics including limit cycle behaviour and chaotic motion of the cantilevered sheet. Recently, the ‘inverted flag’ configuration – a cantilevered elastic sheet aligned with the flow impinging on its free edge – has been observed to produce large-amplitude flapping over a finite band of flow speeds. This flapping phenomenon has been found to be a vortex-induced vibration, and only occurs at sufficiently large Reynolds numbers. In all cases studied, the inverted flag has been formed from a cantilevered sheet of rectangular morphology, i.e. the planform of its elastic sheet is a rectangle. Here, we investigate the effect of the inverted flag’s morphology on its resulting stability and dynamics. We choose a trapezoidal planform which is explored using experiment and an analytical theory for the divergence instability of an inverted flag of arbitrary morphology. Strikingly, for this planform we observe that the flow speed range over which flapping occurs scales approximately with the flow speed at which the divergence instability occurs. This provides a means by which to predict and control flapping. In a biological setting, leaves in a wind can also align themselves in an inverted flag configuration. Motivated by this natural occurrence we also study the effect of adding an artificial ‘petiole’ (a thin elastic stalk that connects the sheet to the clamp) on the inverted flag’s dynamics. We find that the petiole serves to partially decouple fluid forces from elastic forces, for which an analytical theory is also derived, in addition to increasing the freedom by which the flapping dynamics can be tuned. These results highlight the intricacies of the flapping instability and account for some of the varied dynamics of leaves in nature.


Author(s):  
Alberto M. Figueroa Medina ◽  
Andrew P. Tarko

The mean free-flow speed and its variability across drivers are considered important safety factors. Despite a large body of research on operating speeds, there is still much to learn about the factors of free-flow speeds, especially on tangent segments of two-lane rural highways. The roadway factors of speed dispersion across drivers are largely unknown. Also, the use of the entire free-flow speed distribution suggested by other authors has not yet been addressed. Consequently, the existing models are not aimed to evaluate the speed variability at a site. This paper presents free-flow speed models that identify factors of mean speed and speed dispersion on tangent segments and horizontal curves of two-lane rural highways. Ten highway variables, six of them functioning as both mean speed and speed dispersion factors, were identified as speed factors on tangent segments. Four highway and curve variables, two of them functioning as both mean speed and speed dispersion factors, were identified as speed factors on horizontal curves. The developed free-flow speed models have the same prediction capabilities as traditional ordinary-least-squares models developed for specific percentile speeds. The advantages of the developed models include predicting any user-specified percentile, involving more highway characteristics as speed factors than traditional regression models, and separating the impacts on mean speed from the impacts on speed dispersion.


2013 ◽  
Vol 31 (5) ◽  
pp. 871-887 ◽  
Author(s):  
G. Paschmann ◽  
S. Haaland ◽  
B. Sonnerup ◽  
T. Knetter

Abstract. We examine the Alfvénicity of a set of 188 solar wind directional discontinuities (DDs) identified in the Cluster data from 2003 by Knetter (2005), with the objective of separating rotational discontinuities (RDs) from tangential ones (TDs). The DDs occurred over the full range of solar wind velocities and magnetic shear angles. By performing the Walén test in the de Hoffmann–Teller (HT) frame, we show that 77 of the 127 crossings for which a good HT frame was found had plasma flow speeds exceeding 80% of the Alfvén speed at an average angular deviation of 7.7°; 33 cases had speeds exceeding 90% of the Alfvén speed at an average angle of 6.4°. We show that the angular deviation between flow velocity (in the HT frame) and the Alfvén velocity can be obtained from a reduced form of the Walén correlation coefficient. The corresponding results from the Walén test expressed in terms of jumps in flow speed and corresponding jumps in Alfvén speed are similar: 66 of the same 127 cases had velocity jumps exceeding 80% with average angular deviation of 5.8°, and 22 exceeding 90% of the jump in Alfvén speed, with average angular deviation 6.2°. We conclude that a substantial fraction of the 127 events can be identified as RDs. We present further evidence for coupling across the DDs by showing that, for most of the 127 crossings, the HT frame velocities, evaluated separately on the two sides of the DD, are nearly the same – a result required for RDs but not for TDs. We also show that the degree of Alfvénicity is nearly the same for the DDs and fluctuations in which the DDs are embedded. Whatever process causes deviations from ideal Alfvénicity appears to operate equally for the DDs as for the surrounding fluctuations. Finally, our study has established a unique relation between the strahl electron pitch angle and the sign of the Walén slope, implying antisunward propagation in the plasma frame for all 127 cases.


1986 ◽  
Vol 108 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Y.-H. Kim ◽  
J. K. Vandiver ◽  
R. Holler

The vortex-induced vibration response of long cables subjected to vertically sheared flow was investigated in two field experiments. In a typical experiment, a weight was hung over the side of the research vessel by a cable that was instrumented with accelerometers. A typical experiment measured the acceleration response of the cable, the current profile, the tension, and angle of inclination at the top of the cable. Total drag force was computed from the tension and angle measurements. Two braided Kevlar cables were tested at various lengths from 100 to 9,050 ft. As a result of these experiments, several important conclusions can be drawn: (i) the wave propagation along the length of the cable was damped, and therefore, under most conditions the cable behaved like an infinite string; (ii) response spectra were quite broad-band, with center frequencies determined by the flow speed in the region of the accelerometer; (iii) single mode lock-in was not observed for long cables in the sheared current profile; (iv) the average drag coefficient of long cables subjected to sheared flow was considerably lower than observed on short cables in uniform flows; (v) the r.m.s. response was higher in regions of higher current speed. A new dimensionless parameter is proposed that incorporates the properties of the cable as well as the sheared flow. This parameter is useful in establishing the likelihood that lock-in may occur, as well as in estimating the number of modes likely to respond.


Sign in / Sign up

Export Citation Format

Share Document