scholarly journals Heavy Metal Retention by Different Forest Species Used for Restoration of Post-Mining Landscapes, N. Greece

2020 ◽  
Vol 12 (11) ◽  
pp. 4453
Author(s):  
Theano Samara ◽  
Ioannis Spanos ◽  
Panagiotis Platis ◽  
Thomas G. Papachristou

The main objective of this research was to study heavy metal absorption by the leaves of main forest species which were planted for that purpose at post-lignite mining landscapes in Northern Greece (Ptolemais, Prefecture of Kozani), as well as in a neighboring region (Kato Grammatiko), 30 km far from the mining area. Four species were studied; two conifers (Pinus nigra Arn., Cupressus arizonica Greene) and two broad-leaved (Robinia pseudoacacia L., Populus nigra L.). The four species varied in their leaf morphology (needles, scale-like leaves, blade, compound or simple, with rough or smooth surfaces). Eighty (80) leaf samples were collected, (10 from each tree species at either site). The heavy metal concentrations measured were iron (Fe), copper (Cu), chromium (Cr), nickel (Ni), cadmium (Cd), manganese (Mn), zinc (Zn) and cobalt (Co). Statistically significant differences (p = 0.01) were found between the lignite deposit and control areas and among the studied species. Higher concentrations were measured for the studied species at the lignite deposit. Moreover, no species demonstrated maximum absorption for all metals. The metal absorption pattern by coniferous trees’ leaves at the mining landscape was similar, with highest concentrations observed for iron and lowest for cobalt [iron (Fe) > zinc (Zn) > manganese (Mn) > copper (Cu) > chromium (Cr) > nickel (Ni) > cobalt (Co)]. Both broadleaved species absorbed highest concentrations of iron, but differed in the amount of the remaining metals [black locust: iron (Fe) > manganese (Mn) > zinc (Zn) > copper (Cu) > nickel (Ni) > chromium (Cr); black poplar: iron (Fe) > zinc (Zn) > manganese (Mn) > copper (Cu) > nickel (Ni) > chromium (Cr) > cobalt (Co)]. Cadmium was detected only in black poplar at both sites. In general, black pine was found to absorb the highest concentration of iron (Fe), and black poplar zinc (Zn). We discuss the importance of carefully selecting the appropriate mixture of tree species in order to achieve maximum habitat restoration effect at heavy metal polluted sites.

2021 ◽  
Vol 13 (6) ◽  
pp. 3563
Author(s):  
Marianthi Tsakaldimi ◽  
Panagiota Giannaki ◽  
Vladan Ivetić ◽  
Nikoleta Kapsali ◽  
Petros Ganatsas

Pinus nigra is one of the most widely used tree species for reforestation within its geographical distribution, as well as being a potential substitute for other tree species in Central Europe under future climate scenarios. P. nigra is transplanted into the field as two-year or three-year old seedlings because of its relatively low growth rate in the nursery. This study investigated the effects of fertilization programs and shading on P. nigra seedlings, aiming to accelerate early growth, and thus to reduce the nursery rearing time. The experiment (a completely randomized block design) was conducted in an open-air nursery by sowing seeds from Grevena, Northern Greece, in Quick pots filled with peat and perlite in a 2:1 ratio. The seedlings were subjected to two levels of fertilization—5 and 10 g L−1 NPK (30-10-10)—and two shading levels: 50% and 70%. At the ends of the first and second nursery growing season, we recorded the seedlings’ above- and below-ground morphology and biomass data. The results show that the application of all of the treatments produced seedlings which met the targeted quality standards for outplanting. However, the combination of a high fertilization rate and low shading level resulted in seedlings of a higher morphological quality, which is often considered to be an indicator for a successful seedling establishment in the field.


Author(s):  
Yiwei Zhao ◽  
Liangmin Gao ◽  
Fugeng Zha ◽  
Xiaoqing Chen ◽  
Xiaofang Zhou ◽  
...  

AbstractDue to the special sensitivity of typical ecologically fragile areas, a series of human life, mining, and other activities have a greater impact on the environment. In this study, three coal mines in Ordos City on the Loess Plateau were selected as the study area, and the pollution levels of heavy metals in the area were studied by measuring As, Hg, Cr, Cd, Cu, Ni, and Pb in the soil of 131 sampling points. Combined with the concept of “co-occurrence network” in biology, the level of heavy metals in soil was studied using geostatistics and remote sensing databases. The results showed that the concentrations of Hg, Cr, Ni, Cu, and Pb in more than half of the sampling points were higher than the local environmental background value, but did not exceed the risk control value specified by China, indicating that human factors have a greater influence, while Cd and As elements are mainly affected Soil parent material and human factors influence. Heavy metal elements have nothing to do with clay and silt but have an obvious correlation with gravel. Cd, Pb, As and Ni, Cd, Cr are all positively correlated, and different heavy metals are in space The distribution also reflects the autocorrelation, mainly concentrated in the northeast of the TS mining area and the middle of the PS mining area.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ufere N. Uka ◽  
Ebenezer J. D. Belford ◽  
Florence A. Elebe

AbstractThis study was undertaken to examine changes in the content of pigments and accumulation of metals from vehicular pollution in selected species of roadside trees under vehicular pollution. A major arterial road with heavy vehicle emissions in the Kumasi Metropolis was designated as the polluted site, while Kwame Nkrumah University of Science and Technology Campus was designated as the control site. Four tree species (Terminalia catappa, Mangifera indica, Ficus platyphylla and Polyalthia longifolia) selected for the study were well distributed and abundant in the polluted and control sites. Photosynthetic pigments and levels of heavy metals (Pb, Cu, Cd and zinc) were assessed in their leaves. Chlorophyll and carotenoid contents were determined by absorption spectrometry, while the metal accumulation index (MAI) was used to determine the total metal accumulation capacity of the tree species. We observed a reduction in photosynthetic pigments in the leaf samples from the polluted site. Ficus platyphylla had the maximum reduction in total chlorophyll (49.34%), whereas Terminalia catappa recorded the lowest reduction (33.88%). Similarly, the largest decrease (31.58%) of carotenoid content was found in Terminalia catappa trees and the lowest in Polyalthia longifolia (16.67%). The Polyalthia longifolia, Ficus platyphylla and Terminalia catappa leaf samples collected at the polluted site recorded a higher ratio of chlorophyll a/b. Heavy metal (Cu, Pb, Zn and Cd) accumulation in leaf samples was higher in the polluted site than in the control, as expected. The highest metal MAI value was recorded in Mangifera indica (5.35) followed by Polyalthia longifolia with 4.30. The findings from this study specifically demonstrate that air contamination induced by vehicles decreases the level of photosynthetic pigments in trees subjected to roadside emissions. It is clear that both chlorophyll a/b and chlorophyll/carotenoid ratios will act as very useful stress-level markers. Elevated heavy metal levels in the tree species along arterial roadsides indicate that they serve as heavy metals sink. The change in MAI resulting from different pollution burden is an indication that the removal capabilities of the tree species differ from each other. We therefore suggest M. indica and P. longifolia as potential species to be used in air pollution reduction plans in the city.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 934
Author(s):  
Evangelos Tzamos ◽  
Micol Bussolesi ◽  
Giovanni Grieco ◽  
Pietro Marescotti ◽  
Laura Crispini ◽  
...  

The importance of magnesite for the EU economy and industry is very high, making the understanding of their genesis for the exploration for new deposits a priority for the raw materials scientific community. In this direction, the study of the magnesite-hosting ultramafic rocks can be proved very useful. For the present study, ultramafic rock samples were collected from the magnesite ore-hosting ophiolite of the Gerakini mining area (Chalkidiki, Greece) to investigate the consecutive alteration events of the rocks which led to the metallogenesis of the significant magnesite ores of the area. All samples were subjected to a series of analytical methods for the determination of their mineralogical and geochemical characteristics: optical microscopy, XRD, SEM, EMPA, ICP–MS/OES and CIPW normalization. The results of these analyses revealed that the ultramafic rocks of the area have not only all been subjected to serpentinization, but these rocks have also undergone carbonation, silification and clay alteration. The latter events are attributed to the circulation of CO2-rich fluids responsible for the formation of the magnesite ores and locally, the further alteration of the serpentinites into listvenites. The current mineralogy of these rocks was found to be linked to one or more alteration event that took place, thus a significant contribution to the metallo- and petrogenetic history of the Gerakini ophiolite has been made. Furthermore, for the first time in literature, Fe inclusions in olivines from Greece were reported.


2018 ◽  
Vol 42 (2) ◽  
Author(s):  
Daniele Maria Marques ◽  
Adriano Bortolotti Silva ◽  
José Ricardo Mantovani ◽  
Dalvana Sousa Pereira ◽  
Thiago Corrêa Souza

ABSTRACT Copper (Cu) is an essential micronutrient for plants. However, when in excess, it becomes phytotoxic. In this context, the objective of this study was to evaluate the growth and physiological responses of tree species exposed to different copper concentrations in the soil. Three experiments were carried out, one for each forest species under study: Myroxylon peruiferum ("Óleo Bálsamo"), Hymenaea courbaril ("Jatobá") and Peltophorum dubium ("Canafístula"), with the same doses of copper (0, 50, 100, 200 and 400 mg kg-1). The experimental design was in randomized blocks (DBC), with five copper concentrations and four replicates. The plants were grown on soil substrate packed in 8-dm3 pots and kept in a greenhouse for 90 days. Biometric measurements, chlorophyll, antioxidant enzymes and copper content in tissues were evaluated. Copper did not influence the vegetative growth of the species studied. The content of chlorophyll "a" was reduced with increasing copper concentrations in the soil. H. courbaril had 56 to 92% copper retained in the roots, and the same behavior was observed for P. dubium (77-91%) and M. peruiferum (19-64%). In the three species studied, there was copper bioaccumulation, mainly in the roots, possibly as a metal tolerance strategy, preserving the most active tissues and the photosynthetic machinery. Cu translocation from roots to shoot was very restricted in all species. This behavior, associated with the increase in the activity of some antioxidant enzymes in plants, may indicate the phytoremediation potential of the studied species.


2007 ◽  
Vol 20-21 ◽  
pp. 311-314 ◽  
Author(s):  
Christian Lorenz ◽  
Dirk Merten ◽  
Götz Haferburg ◽  
Georg Büchel

Column experiments were carried out using contaminated geosubstrates and previously isolated Streptomyces strains from the former uranium mining area Ronneburg (Germany) to study transfer processes of heavy metals including radionuclides. Preliminary tests with comparatively low heavy metal and radionuclide contaminated surface material showed strongly elevated Mn concentrations up to 1060 #g/l after passage through inoculated columns. In contrast, the eluates of non inoculated columns showed, after a “first flush”, low Mn concentrations around 30 #g/l. Poisoned control columns showed decreasing concentrations after the “first flush” (maximum Mn release of 540 #g/l). Highest manganese release from the inoculated, non poisoned columns corresponded with strongly decreasing redox potentials (+200 to -270 mV), which probably indicates microbially catalysed manganese release through reductive processes. One of the strains isolated from the column material was identified as a potentially heavy metal resistant strain of Cupriavidus metallidurans. It showed tolerance of up to 30 mM Mn (II), however no aerobic Mn (IV) reduction processes were indicated.


Sign in / Sign up

Export Citation Format

Share Document