scholarly journals Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques

2020 ◽  
Vol 12 (12) ◽  
pp. 5068 ◽  
Author(s):  
Marco Grella ◽  
Paolo Marucco ◽  
Athanasios T. Balafoutis ◽  
Paolo Balsari

The most widespread method for weed control and suckering in vineyards is under-row band herbicide application. It could be performed for weed control only (WC) or weed control and suckering (WSC) simultaneously. During herbicide application, spray drift is one of the most important environmental issues. The objective of this experimental work was to evaluate the performance of specific Spray Drift Reducing Techniques (SDRTs) used either for WC or WSC spray applications. Furthermore, spray drift reduction achieved by buffer zone adoption was investigated. All spray drift measurements were conducted according to ISO22866:2005 protocol. Sixteen configurations deriving from four nozzle types (two conventional and two air-induction—AI) combined with or without a semi-shielded boom at two different heights (0.25 m for WC and 0.50 m for WSC) were tested. A fully-shielded boom was also tested in combination with conventional nozzles at 0.25 m height for WC. Ground spray drift profiles were obtained, from which corresponding Drift Values (DVs) were calculated. Then, the related drift reduction was calculated based on ISO22369-1:2006. It was revealed that WC spray applications generate lower spray drift than WSC applications. In all cases, using AI nozzles and semi-shielded boom significantly reduced DVs; the optimum combination of SDRTs decreased spray drift by up to 78% and 95% for WC and WSC spray application, respectively. The fully-shielded boom allowed reducing nearly 100% of spray drift generation. Finally, the adoption of a cropped buffer zone that includes the two outermost vineyard rows lowered the total spray drift up to 97%. The first 90th percentile model for the spray drift generated during herbicide application in vineyards was also obtained.

2020 ◽  
Vol 73 ◽  
pp. 13-23
Author(s):  
Brian Richardson ◽  
Carol Rolando ◽  
Andrew Hewitt ◽  
Mark Kimberley

Large areas of New Zealand are being aerially sprayed with herbicides to manage ‘wilding’ conifer spread. The purpose of the study was to obtain and analyse droplet spectra produced by nozzles commonly used for wilding conifer spraying to determine whether or not operational recommendations for a target droplet size class (~350 µm) are being met. Droplet spectra were measured in a wind tunnel for 27 nozzle x 3 operating condition (nozzle angle, air speed and pressure) combinations tested for each of three spray mixes. AGDISP, an aerial spray application simulation model, was used to quantify the field performance implications of changes to droplet spectra parameters. Only one nozzle, the CP-09, 0.078, 30°, met the target droplet size specification when used at 45° but not at 0°. However, under these conditions, this nozzle produced a large driftable fraction. All but one of the other scenarios tested produced much larger droplet sizes. Operational spray mixes tended to slightly increase the potential for spray drift compared with the water control. The CP-09, 0.078, 30° nozzle used at 45° met the operational droplet size specification but is more sensitive to changes to nozzle angle (0° versus 45°) than the other nozzles tested. None of the three Accu-FloTM nozzles tested met the target droplet size specification. However, the Accu-FloTM nozzles produced very few fine droplets making them good choices for reducing spray drift potential.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
L.F. CIESLIK ◽  
R.A. VIDAL ◽  
A.B. MACHADO ◽  
M.M. TREZZI

ABSTRACT Grass weeds are common in summer crops and strongly decreases the grain yield of the common bean crop. The time of herbicide application influences the variability of environmental conditions and affects the product performance. The objectives of this work were to identify the time of fluazifop-p-butyl (fluazifop) application which gives best grass weed control in the common bean crop and to elucidate the environmental variables most important for the efficacy of this herbicide. Field experiments were conducted involving five application times (2 a.m., 6 a.m., 11 a.m., 4 p.m. and 9 p.m.) and five doses of fluazifop (80, 110, 140, 170 and 200 g ha-1), with additional no-herbicide control. At the time of the herbicide application it was determined the air temperature, relative humidity, the photosynthetically active radiation (PAR) and the leaf angle, whereas the weed control and the dry mass of the weed Urochloa plantaginea was assessed at 20 days after treatment (DAT). Efficacy on grass control with fluazifop was dependent on the herbicide dose and on the time of day that the product was applied. Spray at early morning hours (6 a.m.) showed better efficacy on weed control in relation to periods during warmer conditions of the day (11 a.m. and 4 p.m.). Nocturnal fluazifop application had better weed control when compared to herbicide sprayed in the afternoon. The air temperature, relative humidity and PAR were correlated to weed leaf angle, which correlated the most with fluazifop performance.


2013 ◽  
Vol 31 (4) ◽  
pp. 893-902 ◽  
Author(s):  
C.E. Schaedler ◽  
J.A. Noldin ◽  
D.S. Eberhardt ◽  
D. Agostinetto ◽  
N.R. Burgos

ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.


1997 ◽  
Vol 11 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Julio A. Scursoni ◽  
Emilio H. Satorre

The objective of this paper was to evaluate the effect of preplant applications of trifluralin on barley stand and yield, and control of grass weeds in field experiments during 1992 and 1993. Factors examined were: (1) crop planting patterns (conventional drill with rows 15 cm apart and deep-seeder drill with rows 25 cm apart), (2) herbicide application times (22 d before sowing and immediately before sowing), and (3) herbicide application. During 1993, hand-weeded plots also were established. Trifluralin applied preplant at 528 g ai/ha reduced weed density and biomass. Weed control was higher under conventional planting than under the deep planting pattern, and there was no effect of the time of application on herbicide efficacy. There was no herbicide injury to the crop, and grain yield was higher in treated than in untreated plots due to successful weed control.


1996 ◽  
Vol 10 (3) ◽  
pp. 526-530
Author(s):  
Jeffrey A. Koscelny ◽  
Thomas F. Peeper

The efficacy of sulfonylurea herbicides impregnated on granular fertilizers applied PPI or POST was compared to broadcast spray applications for annual broadleaf weed control in winter wheat. Henbit and bushy wallflower were controlled by chlorsulfuron or triasulfuron impregnated onto diammonium phosphate granular fertilizer applied PPI. Efficacy of these herbicides for annual broadleaf weed control was reduced by applying them POST with granular urea fertilizer carrier instead of with water carrier.


2015 ◽  
Vol 33 (3) ◽  
pp. 607-614
Author(s):  
G. A. M. PEREIRA ◽  
L. H. BARCELLOS JR ◽  
D. V. SILVA ◽  
R. R. BRAGA ◽  
M. M. TEIXEIRA ◽  
...  

ABSTRACTInadequate herbicide application can result in failures in weed control and/or poisoning of the crops, resulting in yield losses. In this research were assessed the effects of the sprayer nozzle boom height in the distribution of the spray solution for weed control, influencing intoxication of beans and crop yield. Experiments were conducted in laboratory and field conditions. In laboratory, the performance of flat spray tip TT 11002 was assessed at heights 0.20, 0.30, 0.40 and 0.50 meters with respect to the target surface. In the field the same heights were assessed in applications of herbicides fomesafen, fluazifop-P-butyl and fomesafen + fluazifop-P-butyl. There was an inverse relationship between the height of the spray boom and the coefficients of variation of the patterns. The mixture better efficiency in a tank of fluazifop-P-butyl + fomesafen was obtained with the height of 0.50 m from the target. This treatment resulted in better weed control, lower poisoning of the bean plants and better crop yield rates.


2006 ◽  
Vol 46 (9) ◽  
pp. 1177 ◽  
Author(s):  
J. A. Werth ◽  
C. Preston ◽  
G. N. Roberts ◽  
I. N. Taylor

Forty growers in 4 major cotton-growing regions in Australia were surveyed in 2003 to investigate how the adoption of glyphosate-tolerant cotton (Roundup Ready) had influenced herbicide use, weed management techniques, and whether changes to the weed spectrum could be identified. The 10 most common weeds reported on cotton fields were the same in glyphosate-tolerant and conventional fields in this survey. Herbicide use patterns were altered by the adoption of glyphosate-tolerant cotton with up to 6 times more glyphosate usage, but 21% fewer growers applying pre-emergence herbicides in glyphosate-tolerant fields. Other weed control practices such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing were only reduced marginally. However, growers indicated that management practices are likely to change over time, especially with the introduction of enhanced glyphosate tolerance technology (Roundup Ready Flex), and anticipate a 32% decrease in the number of growers using alternative weed management practices. To date, management practices other than glyphosate use have not changed markedly in glyphosate-tolerant cotton indicating a conservative approach by growers adopting this technology and reflecting the narrow window of herbicide application. The range of weed control options still being employed in glyphosate-tolerant cotton would not increase the risk of glyphosate resistance development.


2014 ◽  
Vol 564 ◽  
pp. 216-221
Author(s):  
Nasir S. Hassen ◽  
Nor Azwadi Che Sidik ◽  
Jamaluddin Md Sheriff

Spray losses are the most important problem that is faced in the spray application process as result of spray drift to non target areas by the action of air flow.This paper investigated the spray drift for banding applicationusing even flat-fan nozzle TPEunder wind tunnel conditions.In addition, this paper also examined the effect of different spray fan angles 65°, 80° and 95° on spray drift particularly where there is need to make the nozzle operate at the optimum heights above the ground or plant level.In addition, three cross wind speeds 1, 2 and 3m/swere produced to determine the effect of wind speed on total spray drift.According to the results from this study, the nozzle anglehas a significant effect on the total spray drift. The nozzle angle 65° gave the highest drift reduction compared to the other nozzle angles. The maximum driftfor all nozzles was found at nozzle height of 60 cm. The minimum mean value of the drift was found at wind speed of 1 m/s. This study supports the use of nozzle angles of less than 95° on heights more than 0.5m and on wind speeds more than 1m/s as a means for minimizing spray drift.


Author(s):  
S. Selvakumar ◽  
R. Ajaykumar ◽  
A. Ammaiyappan

Background: Time of pre-emergence herbicide application is an important factor that decides the efficiency of herbicide. If the pre-emergence herbicide is not applied at appropriate time, it may cause ineffective weed control or toxicity to crops. With this background, a field experiment was conducted at TNAU, Madurai to optimize the time of pre-emergence herbicides namely pendimethalin and oxyfluorfen application for effective weed management in irrigated blackgram. Methods: The experiment was laid out in randomized block design with three replication. Treatments were application of pendimethalin at 0.75 kg ha-1 and oxyfluorfen at 0.2 kg ha-1 on 1, 2, 3, 4 days after sowing, weed free check and unweeded check. Result: Results of the study revealed that oxyfluorfen gave maximum weed control efficiency as compared to pendimethalin, but toxicity to the crop was observed when oxyfluorfen was sprayed after 2 days of sowing. Yield and economics were achieved higher with application of 0.75 kg ha-1 of pendimethalin at 2 DAS, which was on par with application of 0.2 kg ha-1 of oxyfluorfen at 1 DAS due to lesser toxicity. Application of 0.75 kg ha-1 of pendimethalin and 0.2 kg ha-1 of oxyfluorfen didn’t leave any herbicide residue after harvest. Hence, application of 0.75 kg ha-1 of pendimethalin at 2 DAS and 0.2 kg ha-1 of oxyfluorfen at 1 DAS can be recommended for effective weed management in irrigated balckgram.


Sign in / Sign up

Export Citation Format

Share Document