scholarly journals Endozoochory by Goats of Two Invasive Weeds with Contrasted Propagule Traits

2020 ◽  
Vol 12 (13) ◽  
pp. 5450
Author(s):  
Ahmed M. Abbas ◽  
Mohammed Al-Kahtani ◽  
Mohamed Abdelazeem Mousa ◽  
Mohammed O. Badry ◽  
Ahmed S.A. Hassaneen ◽  
...  

Invasive plants have very important ecological and socioeconomic impacts. Producing and dispersing many viable seeds are key plant functional traits for invaders. Ungulate grazing plays an important role in the endozoochorous seed dispersal within grasslands and rangelands. Grazing can be applied as a practical and economical control method for plant invasions. We analyzed the effects of seed passage through the goat digestive system on the germination and viability for Sorghum halepense and Malva parviflora, common invasive species with contrasted propagules and seed traits. Both studied species produced seeds able to survive, in a small percentages (c. 0.80–1.70%), after being eaten by goats. Most of the seeds (c. 40–55%) of both species were retrieved between 24–48 h after ingestion. Goat passage provoked a decrease (> 60%) in the germination percentage and seed viability of S. halepense that was higher with longer gut retention times. In M. parviflora, the goat gut passage did not break its primary physical dormancy, since no retrieved seed germinated with similar viability as the uneaten seeds (c. 90%). In view of our results, goat grazing can be applied as a useful method to control S. halepense and M. parviflora invasions. Goats should be kept in corrals for at least 4 days after grazing to prevent transferring viable seeds to uninfected areas.

2022 ◽  
Vol 28 (1) ◽  
pp. 85-91
Author(s):  
Vespasiano Borges de Paiva Neto ◽  
Mateus de Aguiar Torrezan ◽  
Manoela Aparecida Vieira da Silva ◽  
Daly Roxana Castro Padilha ◽  
Jerônimo Constantino Borel ◽  
...  

Abstract Cycnoches haagii Barb. Rodr. is an epiphytic orchid very targeted by collectors, but no reference was found in the literature about its reproductive biology. Thus, the purpose of this study was to obtain initial information regarding pollination types and its influence on seed viability of this native orchid of the Brazilian Cerrado, in order to enable future propagation and preservation programs. Pollination among flowers of the same plant (geitonogamy) or different plants (xenogamy) were carried out. Seeds extracted from the capsules were sown in B&G medium, with full and half strength. Seeds from geitonogamic resulted in 25% of albino protocorms and consequently in albino seedlings. This phenomenon did not occur in seedlings derived from xenogamic pollination. Pigment analysis showed that even the albino seedlings presented chlorophylls and carotenoids, however, in significantly minor concentrations, 16% and 37% respectively, in relation to green seedlings. Geitonogamic and xenogamic pollinations resulted in C. haagii viable seeds with high germination percentage (90%) under in vitro conditions. The germination of seeds from xenogamic pollination resulted in chlorophyll or normal seedlings only, and can be recommended at conservation programs. On the other hand, although geitonogamic pollination should be avoided at conservation programs of this orchid species as it leads to albino seedlings, it showed a very interesting system to obtain seedlings with this phenotype, an interesting plant material to future investigation.


2016 ◽  
Vol 26 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Belén Luna ◽  
Daniel Chamorro

AbstractWater availability regulates timing of germination, especially in those environments where it is a limiting factor. However, the water requirements for germination of most wild Mediterranean species are unknown. In this work we analysed the germination response to water stress of eight Cistaceae species with hard-coated seeds, which are typical for the Mediterranean shrublands. Seeds were exposed to a heat shock in order to overcome physical dormancy and then incubated under five water potentials (0, −0.2, −0.4, −0.6 and −0.8 MPa). Ungerminated seeds following these treatments were transferred to water in order to evaluate the recovery of germination. Additionally, at the end of the experiment, viability of still ungerminated seeds was examined. We analysed final germination percentage, time to reach 50% of the final germination (t50), recovery of germination and seed viability in relation to water stress treatments. Furthermore, hydrotime analysis was performed; sensitivity to water stress, as characterized by Ψb(50), was checked in relation to seed size of species. Overall, water stress delayed and decreased germination but species showed different germination sensitivities, which were not related to seed size. Recovery of germination was high after disappearance of water stress but seed viability decreased in some species. Consequently, post-fire germination of Cistaceae must be strongly regulated by water availability and their seeds can recover germination capacity when sufficient water is available after long periods of incomplete hydration. However, some seeds die during the wait.


HortScience ◽  
1993 ◽  
Vol 28 (9) ◽  
pp. 899-901 ◽  
Author(s):  
Carlma B. Bratcher ◽  
John M. Dole ◽  
Janet C. Cole

The germination responses of wild blue indigo [Baptisia australis (L.) R. Br.], purple coneflower [Echinacea purpurea (L.) Moench.], Maximilian sunflower (Helianthus maximiliani Schrad.), spike goldenrod (Solidago petiolaris Ait.), and Missouri ironweed (Vernonia missurica Raf.) seeds after 0, 2, 4, 6, 8, or 10 weeks of stratification at 5C were investigated. Seed viability was determined using triphenyl tetrazolium chloride staining and germination based on the percentage of viable seeds. Germination percentage (GP) increased in all five species as weeks of stratification increased. Days to first germination and germination range (days from first to last germinating seed) decreased with increasing weeks of stratification, but the effect beyond 4 to 6 weeks was minimal. The number of weeks of stratification for maximum GP was 4 for purple coneflower, 6 for Maximilian sunflower, 8 for Missouri ironweed, and 10 for wild blue indigo and spike goldenrod.


2017 ◽  
Vol 27 (2) ◽  
pp. 74-83 ◽  
Author(s):  
L. Felipe Daibes ◽  
Talita Zupo ◽  
Fernando A.O. Silveira ◽  
Alessandra Fidelis

AbstractInformation from a field perspective on temperature thresholds related to physical dormancy (PY) alleviation and seed resistance to high temperatures of fire is crucial to disentangle fire- and non-fire-related germination cues. We investigated seed germination and survival of four leguminous species from a frequently burned open Neotropical savanna in Central Brazil. Three field experiments were conducted according to seed location in/on the soil: (1) fire effects on exposed seeds; (2) fire effects on buried seeds; and (3) effects of temperature fluctuations on exposed seeds in gaps and shaded microsites in vegetation. After field treatments, seeds were tested for germination in the laboratory, together with the control (non-treated seeds). Fire effects on exposed seeds decreased viability in all species. However, germination of buried Mimosa leiocephala seeds was enhanced by fire in an increased fuel load treatment, in which we doubled the amount of above-ground biomass. Germination of two species (M. leiocephala and Harpalyce brasiliana) was enhanced with temperature fluctuation in gaps, but this condition also decreased seed viability. Our main conclusions are: (1) most seeds died when exposed directly to fire; (2) PY could be alleviated during hotter fires when seeds were buried in the soil; and (3) daily temperature fluctuations in gaps also broke PY of seeds on the soil surface, so many seeds could be recruited or die before being incorporated into the soil seed banks. Thus seed dormancy-break and germination of legumes from Cerrado open savannas seem to be driven by both fire and temperature fluctuations.


2017 ◽  
Vol 10 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Mélissa De Wilde ◽  
Elise Buisson ◽  
Nicole Yavercovski ◽  
Loïc Willm ◽  
Livia Bieder ◽  
...  

Successful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating.


2021 ◽  
Vol 8 (1) ◽  
pp. 79-88
Author(s):  
Md. Nasir Uddin ◽  
S. M. Mahbub Ali ◽  
Md. Abu Sadat ◽  
Md Amazed Hossain Chowdhury ◽  
Israt Jahan Mumu ◽  
...  

Seed plays an important role in agricultural sector for both production and consumption purpose. Availability of vigour seed is one of the major constraints for maximizing crop production. However, healthy seed can also lose its viability during seed storage by changing different physio-chemical properties. Influence of environmental factors and seed containers during storage leading to seed deterioration. In this research, mid storage seed hardening treatment was applied in different aged seeds of jute species (C. Capsularis & C. olitorius) with two types of storage bags. Seed hardening treatment showed the less moisture content with better germination percentage compared to the untreated species of jute seeds. Seed packing in polythene bags during both short and long term seed storages had higher viable seeds compared to the cloth packing seeds. The effect of seed hardening treatment on seed oil content and pattern of oil degradation is distinct in early period of storage. The faster rate of oil degradation, soluble protein and free amino acids was found in seeds of un-treated stored seeds in cloth bag. Contrary, very slow rate of oil degradation was observed in harden seed and stored in polythene bag which indicated better storability of harden seeds.


2018 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
P.K. Dewi Hayati

Soybeans undergo rapid deterioration due to its chemical composition and unfavourable storage conditions. The objective of the research was to determine the length period of seed hidration and dehydration which is integrated with rhizobateri to viability and vigor of deteriorated soybean seed.  A completely randomized design with four replicates were used in this experiment. Seeds were treated with varied combination of hydration period in a rhizobacteria suspension and followed by dehydration time.  Data were analysed using the F-test and significant differences were further tested with Least Significant Difference at the 5% level. Results showed that the hydration and dehydration period of seeds in a rhizobacteria suspension improved viability and vigor of seed which have 59.5% initial germination percentage. The improvement was 12.28%, 0.56, 25.4% and 1.4 days for standard germination test, vigor index, first count test percentage and T50, respectively. The hydration for 60 minutes followed by dehydration for 60 minutes gave the best results on seed viability and vigor.


2010 ◽  
Vol 56 (No. 12) ◽  
pp. 580-583 ◽  
Author(s):  
Z. Martinková ◽  
A. Honěk

After flowering has ceased, dandelion (Taraxacum agg.) capitula close to enable maturation of seeds. In late summer the period of seed maturation lasts for 9 days. The capitula mowed later than 4 days after the start of this period and desiccated at 25°C produce viable seeds. If cut and prostrated on insolated ground inflorescences can experience temperatures exceeding 50°C which may impair seed viability. We determined the effect of desiccation temperature (5, 15, 25, 35, 45 or 55°C) on viability of ripening seeds using inflorescences harvested on September 5, 2008 at Prague-Ruzyne (50°05'N, 14°18'09 E), five days after flowering ceased (about 4 days before seed dispersal). As control, ripe seeds were collected at dispersal on the same day and desiccated at identical temperatures. Desiccated seeds were germinated at constant 17°C. Ripening seeds of maturing capitula only remained germinable if desiccation temperatures were ≤ 35°C (optimum 25°C) and were killed at 45 and 55°C. The viability of ripe seed was not affected by any of the desiccation temperatures. Time of germination of 50% seeds that germinated was significantly shorter in ripe than ripening seeds. Exposure of mowed dandelion inflorescences on insolated ground (solarization) may thus decrease production of viable seeds because of high temperatures experienced during desiccation.  


2020 ◽  
Vol 11 ◽  
Author(s):  
Marcilio Zanetti ◽  
Roberta L. C. Dayrell ◽  
Mariana V. Wardil ◽  
Alexandre Damasceno ◽  
Tais Fernandes ◽  
...  

Cangas (ironstone outcrops) host a specialized flora, characterized by high degree of edaphic endemism and an apparent lack of natural history knowledge of its flora. Due to intense pressure from iron ore mining this ecosystem is under threat and in need of restoration. We studied seed functional traits that are relevant for restoration, translocation and ex situ conservation in 48 species from cangas in eastern Amazon. Were determined the thermal niche breadth, classified seed dormancy and determined methods to overcome it, determined the effect of seed storage on germination, tested the association between germination traits and functional groups, and tested whether seed traits are phylogenetically conserved. We found a broad interspecific variation in most seed traits, except for seed water content. Large interspecific variation in the temperature niche breadth was found among the studied species, but only four species, showed optimum germination at high temperatures of 35–40°C, despite high temperatures under natural conditions. Only 35% of the studied species produced dormant seeds. Mechanical scarification was effective in overcoming physical dormancy and application of gibberellic acid was effective in overcoming physiological dormancy in five species. For the 29 species that seeds were stored for 24 months, 76% showed decreases in the germination percentage. The weak association between germination traits and life-history traits indicate that no particular plant functional type requires specific methods for seed-based translocations. Exceptions were the lianas which showed relatively larger seeds compared to the other growth-forms. Dormancy was the only trait strongly related to phylogeny, suggesting that phylogenetic relatedness may not be a good predictor of regeneration from seeds in cangas. Our study provides support to better manage seed sourcing, use, storage and enhancement techniques with expected reduced costs and increased seedling establishment success.


1972 ◽  
Vol 12 (58) ◽  
pp. 517 ◽  
Author(s):  
RL Harty ◽  
LG Paleg ◽  
D Aspinall

The reduction of 2,3,5-triphenyl tetrazolium chloride (TTC) to a coloured formazan derivative by dehydrogenase enzyme systems in viable seeds has been examined. TTC reduction occurs in dry but not wetmilled tissue and the coloured product could be extracted by any of several organic solvents. This formazan product was estimated spectrophotometrically at 480 nm. The influence of fineness of grinding the tissue, TTC concentration, period of treatment, sample size, vacuum infiltration of the milled tissue with TTC and of extracting solvent were examined and a standard procedure is suggested. Using this procedure, a close correlation between seed viability and TTC reduction was demonstrated. The advantages of this method over the widely used topographical method for estimating seed viability with TTC are discussed.


Sign in / Sign up

Export Citation Format

Share Document