scholarly journals Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector

2020 ◽  
Vol 12 (18) ◽  
pp. 7427
Author(s):  
Khozema Ahmed Ali ◽  
Mardiana Idayu Ahmad ◽  
Yusri Yusup

Climate change has become a considerable concern for humanity during this anthropocentric era. Scientists believe that the rate of global warming and climate change varies directly with the increase in the concentration of greenhouse gases, particularly carbon dioxide. Urbanization is happening at a higher rate in this era than in any other generation. It was reported that the building sector plays a critical role in the emission of carbon dioxide (CO2) into the atmosphere. Construction of buildings, operation, and utilization of the built environment has led to emissions of a large number of CO2 into the ambient air. Various issues and challenges arise from the building sector in reducing CO2 emissions. The exploitation of non-renewable energy resources, poor building design, and lack of sustainability consideration in urbanization has been holding back CO2 emission mitigation measures in the building sector. Therefore, CO2 emission mitigation plans and schemes are necessary alongside standardized frameworks and guidelines. The strategies to reduce CO2 in the building sector are enforcing standards and policy, conducting impact assessment, adopting low carbon technology, and restricting energy utilization. All stakeholders must play their roles efficiently to reduce CO2 emissions and aid in the fight against climate change.

2016 ◽  
Author(s):  
Yuli Shan ◽  
Dabo Guan ◽  
Jianghua Liu ◽  
Zhu Liu ◽  
Jingru Liu ◽  
...  

Abstract. China is the world's largest energy consumer and CO2 emitter. Cities contribute 85 % of the total CO2 emissions in China and thus are considered the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, understanding the CO2 emission status of Chinese cities remains a challenge, mainly owing to the lack of systematic statistics and poor data quality. This study presents a method for constructing a CO2 emissions inventory for Chinese cities in terms of the definition provided by the IPCC territorial emission accounting approach. We apply this method to compile CO2 emissions inventories for 20 Chinese cities. Each inventory covers 47 socioeconomic sectors, 20 energy types and 9 primary industry products. We find that cities are large emissions sources because of their intensive industrial activities, such as electricity generation, production for cement and other construction materials. Additionally, coal and its related products are the primary energy source to power Chinese cities, providing an average of 70 % of the total CO2 emissions. Understanding the emissions sources in Chinese cities using a concrete and consistent methodology is the basis for implementing any climate policy and goal.


1969 ◽  
Vol 20 ◽  
pp. 95-98
Author(s):  
Niels E. Poulsen

The challenge of climate change demands reduction in global CO2 mission. Carbon dioxide capture and storage (CCS) technology can be used to trap and store carbon dioxide gas emitted by coal-burning plants and this can reduce the world’s total CO2 emission by about one quarter by 2050 (IEA 2008, 2009; IPCC 2005). Experience from the storage sites of Sleipner in the Norwegian North Sea, Salah in Algeria, Nagaoka in Japan, Frio in USA and other sites shows that geological structures can safely accommodate CO2 produced and captured from large CO2 point sources. CCS is regarded as a technology that will make power generation from coal sustainable, based on cost-effective CO2 capture, transport and safe geological storage of the released CO2.


Author(s):  
Sacchidananda Mukherjee ◽  
Debashis Chakraborty

Encouraging economic activities is a major motivation for countries to disburse subsidies, but such transfers may also lead to sustainability and climate change related concerns. Through a cross-country empirical analysis involving 131 countries over 1990-2010, the present analysis observes that higher proportional devolution of budgetary subsidies lead to higher CO2 emissions. The results demonstrate that structure of economy is a crucial determinant for per capita CO2 emission, as countries having higher share in agriculture and services in GDP are characterized by lower per capita CO2 emission and vice versa. The empirical findings also underline the importance of the type of government subsidy devolution on CO2 emissions. Countries having high tax-GDP ratio are marked by lower per capita CO2 emission, implying that government budgetary subsidy is detrimental for environment whereas tax is conducive for sustainability. The analysis underlines the importance of limiting devolution of subsidies both in developed and developing countries.


Author(s):  
Joseph S Shapiro

Abstract This paper describes a new fact, then analyzes its causes and consequences: in most countries, import tariffs and nontariff barriers are substantially lower on dirty than on clean industries, where an industry’s “dirtiness” is defined as its carbon dioxide (CO2) emissions per dollar of output. This difference in trade policy creates a global implicit subsidy to CO2 emissions in internationally traded goods and so contributes to climate change. This global implicit subsidy to CO2 emissions totals several hundred billion dollars annually. The greater protection of downstream industries, which are relatively clean, substantially accounts for this pattern. The downstream pattern can be explained by theories where industries lobby for low tariffs on their inputs but final consumers are poorly organized. A quantitative general equilibrium model suggests that if countries applied similar trade policies to clean and dirty goods, global CO2 emissions would decrease and global real income would change little.


2021 ◽  
Vol 14 (11) ◽  
pp. 7277-7290
Author(s):  
Farhan Mustafa ◽  
Lingbing Bu ◽  
Qin Wang ◽  
Na Yao ◽  
Muhammad Shahzaman ◽  
...  

Abstract. Atmospheric carbon dioxide (CO2) is the most significant greenhouse gas, and its concentration is continuously increasing, mainly as a consequence of anthropogenic activities. Accurate quantification of CO2 is critical for addressing the global challenge of climate change and for designing mitigation strategies aimed at stabilizing CO2 emissions. Satellites provide the most effective way to monitor the concentration of CO2 in the atmosphere. In this study, we utilized the concentration of the column-averaged dry-air mole fraction of CO2, i.e., XCO2 retrieved from a CO2 monitoring satellite, the Orbiting Carbon Observatory-2 (OCO-2), and the net primary productivity (NPP) provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the anthropogenic CO2 emissions using the Generalized Regression Neural Network (GRNN) over East and West Asia. OCO-2 XCO2, MODIS NPP, and the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) CO2 emission datasets for a period of 5 years (2015–2019) were used in this study. The annual XCO2 anomalies were calculated from the OCO-2 retrievals for each year to remove the larger background CO2 concentrations and seasonal variability. The XCO2 anomaly, NPP, and ODIAC emission datasets from 2015 to 2018 were then used to train the GRNN model, and, finally, the anthropogenic CO2 emissions were estimated for 2019 based on the NPP and XCO2 anomalies derived for the same year. The estimated and the ODIAC CO2 emissions were compared, and the results showed good agreement in terms of spatial distribution. The CO2 emissions were estimated separately over East and West Asia. In addition, correlations between the ODIAC emissions and XCO2 anomalies were also determined separately for East and West Asia, and East Asia exhibited relatively better results. The results showed that satellite-based XCO2 retrievals can be used to estimate the regional-scale anthropogenic CO2 emissions, and the accuracy of the results can be enhanced by further improvement of the GRNN model with the addition of more CO2 emission and concentration datasets.


2015 ◽  
Vol 18 (1) ◽  
pp. 9
Author(s):  
Nyahu Rumbang

Study of carbon dioxide emissions in different types of peatlands use in Central and West Kalimantan has been conducted in January-June 2006 and January-April 2007. The study represents 4 types of land use in Central Kalimantan as treatment: 5 years for chinesse cabbage, 10 years for chinesse cabbage, 5 years for sweet corns, and 10 years for sweet corns. As for the treatments in West Kalimantan, they include corn field, Aloe vera field, oil palm plantation, and rubber plantation. Carbon dioxide was measured using infrared gas analysis (model EGM-4, PP systems, Hitchin, UK). In Central Kalimantan, the highest CO2 is emitted from sweet corn plants (arable land for 10 years) by 0.79 g CO2/m2/hour, chinesse cabbage plants (for 5 years) by 0.73 g CO2/m2/hour, chinesse cabbage plants (for 10 years) by 0.67 g CO2/m2/hour and, the least, sweet corn plants (for 5 years) by 0.41 g CO2/m2/hour. The highest CO2 emission from West Kalimantan is released from rubber plants at 1.22 g CO2/m2/hour, followed by palm oil plants by 0.96 g CO2/m2/hour, Aloe vera plants by 0.68 g CO2/m2/hour and corn plants by 0.35 g CO2/m2/hour. Groundwater table depth are the most important factors among other factors that influence CO2 emissions. Groundwater table depth indicated a positive correlation with CO2 emissions in all types of peatlands use. C-organic production of sweet corn plants at 11.66 t C/ha/year is higher than that of chinesse cabbage plants at 1.64 t C/ha /year. Corn plants produce organic-C was 11.66 t C/ha/year, equivalent to the amount of loss of C through CO2 emissions by 11.29 t C/ha/year.Keywords: peat, types of land use, carbon, CO2 emission


Author(s):  
Saidi Siuhi ◽  
Judith L. Mwakalonge ◽  
Judy Perkins

This paper compared performance of methods for combining model information estimated in one region and applied to another region to improve estimation results. The application is for models developed to estimate household-level automobile-specific CO2 emissions. The results indicated that automobile-specific CO2 emissions models can be transferred from one geographical region to another. The estimates of CO2 emissions can assist agencies such as policy makers, businesses, and transportation planners to track trends and identify opportunities to reduce CO2 emissions and increase efficiency of transportation systems to lessen their impact on global warming, climate change, and air quality standards.


Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1330-1333 ◽  
Author(s):  
Steven J. Davis ◽  
Ken Caldeira ◽  
H. Damon Matthews

Slowing climate change requires overcoming inertia in political, technological, and geophysical systems. Of these, only geophysical warming commitment has been quantified. We estimated the commitment to future emissions and warming represented by existing carbon dioxide–emitting devices. We calculated cumulative future emissions of 496 (282 to 701 in lower- and upper-bounding scenarios) gigatonnes of CO2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1° to 1.4°C) above the pre-industrial era and atmospheric concentrations of CO2 less than 430 parts per million. Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO2-emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives.


2020 ◽  
Vol 66 (No. 4) ◽  
pp. 183-192 ◽  
Author(s):  
Abrham Tezera Gessesse ◽  
Ge He

This study examines the nexus of carbon dioxide (CO2) emissions, energy consumption (EC) and gross domestic products (GDP), using an Autoregressive Distributed Lag (ARDL) bounds test approach of co-integration and error-correction model (ECM) for the period 1971–2015. The aim of the research is to i) examine the relationship between CO2 and GDP as “cross-coupling, relative decoupling, or absolute decoupling,” and validate the existence of the Environmental Kuznets Curve (EKC) hypothesis; ii) detect causality between CO2 emissions, EC, and GDP, and scrutinize their impacts. The ARDL results confirm a long-run and short-run co-integration relationship between the variables. The relationship between CO2 emissions and GDP is “relatively decoupling,” and the EKC exists in China. Its CO2 emissions are more explained by EC and contribute twofold of GDP. In the long run, there was significant negative causality from CO2 emission and GDP to EC. This indicates Chinese economic development structure should be re-designed towards energy-saving and decarbonized economic structure. Moreover, the central and provincial governments of China should synchronize optimal energy utilization and green economic structure to mitigate environmental deterioration and climate change.


Sign in / Sign up

Export Citation Format

Share Document