scholarly journals PV Waste Thermal Treatment According to the Circular Economy Concept

2020 ◽  
Vol 12 (24) ◽  
pp. 10562
Author(s):  
Magdalena Bogacka ◽  
Martyna Potempa ◽  
Bartłomiej Milewicz ◽  
Dariusz Lewandowski ◽  
Krzysztof Pikoń ◽  
...  

Photovoltaic panels (PV) are one of the most popular technological solutions used to produce green renewable energy. They are known as green technology, but by analyzing a life cycle of a common panel, we can find out that production of these panels is strictly associated with generation of a large waste stream. PV modules are constantly modified and, therefore, it is required to consider the impact of the applied materials on the environment during the whole lifecycle of the product. The most important aspect of the assessment of a life cycle of a photovoltaic module in the phase of decommissioning is material recycling. The process of material recycling is very difficult, due to the lamination used in the currently exploited technology. This paper presents the results of pyrolysis for a sample of a silicon module. The results of the presented research show a weight loss of 48.16 in case of the tested samples. This paper presents the outcome of a quantitative analysis of the content of polycyclic aromatic for liquid and concentrations of Br, Cl and F for a gaseous fraction of pyrolysis products. The goal of the research presented in the paper was to find the optimal parameters for thermal separation, as well as the influence of the energy consumption and materials separation efficiency on the final thermal efficiency of the process.

2013 ◽  
Vol 671-674 ◽  
pp. 2636-2643 ◽  
Author(s):  
Cheng Yi ◽  
Jun Yi Huang ◽  
Fu Yan Sun ◽  
Meng Lan Lin ◽  
Qiang Liu

According to the idea of the life cycle assessment method (LCA), the consumption of the energy and material, which is involved in the whole life cycle in each phase of single green construction technique, and the impact on the environment, is discussed. Based on the fuzzy comprehensive evaluation theory, a green degree evaluation system is established. The Analytic Hierarchy Process method (AHP) is adopted to establish green assessment system of the hierarchical structure model, and by means of 10/10-18/2 scaling method through pairwise comparison on tectonic judgment matrix of each level, the weight of each affecting factor is ultimately determined. Finally, VB program is used to compile visual programs of green degrees assessment. The quantitative assessment of integrated green degree for green construction technology is obtained, after inputting the score of the corresponding index, with reference to the influence of the factors assessment standards. By verifying rationality of the assessment system, the study proves that the system plays a guidance role in the self-assessment and reasonable construction for the construction of green technology.


2019 ◽  
Vol 6 (4) ◽  
pp. 621-632
Author(s):  
Ofentse M. Moroeng ◽  
Vimbai Mhuka ◽  
Mathew M. Nindi ◽  
R. James Roberts ◽  
Nicola J. Wagner

Abstract This study aims to compare iso-rank vitrinite-rich and inertinite-rich coal samples to understand the impact of coal-forming processes on pyrolysis chemistry. A medium rank C bituminous coal was density-fractionated to create a vitrinite-rich and an inertinite-rich sub-sample. The vitrinite-rich sample has 83 vol% total vitrinite (mineral-matter-free basis), whereas the inertinite-rich counterpart has 66 vol% total inertinite. The vitrinite-rich sample is dominated by collotelinite and collodetrinite. Fusinite, semifusinite, and inertodetrinite are the main macerals of the inertinite-rich sample. Molecular chemistry was assessed using a pyrolysis gas chromatograph (py-GC) equipped with a thermal desorption unit coupled to a time of flight mass spectrometer (MS) (py-GC/MS) and solid-state nuclear magnetic resonance (13C CP-MAS SS NMR). The pyrolysis products of the coal samples are generally similar, comprised of low and high molecular weight alkanes, alkylbenzenes, alkylphenols, and alkyl-subtituted polycyclic aromatic hydrocarbons, although the vitrinite-rich sample is chemically more diverse. The lack of diversity exhibited by the inertinite-rich sample upon pyrolysis may be interpreted to suggest that major components were heated in their geologic history. Based on the 13C CP-MAS SS NMR analysis, the inertinite-rich sample has a greater fraction of phenolics, reflected in the py-GC/MS results as substituted and unsubstituted derivatives. The greater abundance of phenolics for the inertinite-rich sample may suggest a fire-related origin for the dominant macerals of this sample. The C2-alkylbenzene isomers (p-xylene and o-xylene) were detected in the pyrolysis products for the vitrinite-rich and inertinite-rich samples, though more abundant in the former. The presence of these in both samples likely reflects common source vegetation for the dominant vitrinite and inertinite macerals.


2021 ◽  
Author(s):  
Xianyou Pan ◽  
Xiongfeng Pan ◽  
Xianhua Wu ◽  
Shucen Guo

Abstract Environmental governance (EG) and green technology innovation (GTI) are important means to promote the construction of ecological civilization of all countries around the world. Past scholars focused on the impact of EG on GTI based on the static perspective usually, but ignored the impact of the dynamic development law of enterprises. This study differentiates, takes enterprise’s life cycle stage as the breakthrough point, and analyzes the dynamic effect of EG on GTI at the first time. Further, considering the important of information interaction among different enterprise in the background of collaborative innovation, this study reveals the evolution trend of enterprise’s knowledge and technology transfer (KTT) in different life cycle stage, and explains the internal mechanism of the dynamic effect mentioned above. The theoretical model finds that for enterprises in different life cycle stage, the impact of EG on GTI depends on abatement cost and innovation compensation effect two aspects. The development of enterprise’s KTT helps to strengthen the incentive effect of EG on GTI, thus causing the differentiated GTI effect among different enterprises under the restrict of EG. The empirical research results based on the micro data of Shanghai and Shenzheng A-share listed firms from 2013 to 2018 in China confirm the theoretical inference. EG has a positive role in promoting GTI, however, compared with the enterprises in growth and mature stage, the positive innovation effect does not hold for the enterprises in recession stage. The statistical results show that the enterprise’s KTT in growth and mature stage is significantly better than that of enterprises in recession. Moreover, the empirical analysis results confirm that enterprise’s KTT have a positive moderating effect on the relationship between EG and GTI. Combined with the above conclusions, this study puts forward several useful management implications for improving the designing of environmental governance system, optimizing the cooperation of GTI and the EG decision-making under the background of collaborative innovation.


2003 ◽  
Author(s):  
Shayne Brannman ◽  
Eric W. Christensen ◽  
Ronald H. Nickel ◽  
Cori Rattelman ◽  
Richard D. Miller

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


Author(s):  
Agata Di Noi ◽  
Silvia Casini ◽  
Tommaso Campani ◽  
Giampiero Cai ◽  
Ilaria Caliani

Honey bees and the pollination services they provide are fundamental for agriculture and biodiversity. Agrochemical products and other classes of contaminants, such as trace elements and polycyclic aromatic hydrocarbons, contribute to the general decline of bees’ populations. For this reason, effects, and particularly sublethal effects of contaminants need to be investigated. We conducted a review of the existing literature regarding the type of effects evaluated in Apis mellifera, collecting information about regions, methodological approaches, the type of contaminants, and honey bees’ life stages. Europe and North America are the regions in which A. mellifera biological responses were mostly studied and the most investigated compounds are insecticides. A. mellifera was studied more in the laboratory than in field conditions. Through the observation of the different responses examined, we found that there were several knowledge gaps that should be addressed, particularly within enzymatic and molecular responses, such as those regarding the immune system and genotoxicity. The importance of developing an integrated approach that combines responses at different levels, from molecular to organism and population, needs to be highlighted in order to evaluate the impact of anthropogenic contamination on this pollinator species.


2021 ◽  
Vol 11 (9) ◽  
pp. 3820
Author(s):  
Noelia Llantoy ◽  
Gabriel Zsembinszki ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

With the aim of contributing to achieving the decarbonization of the energy sector, the environmental impact of an innovative system to produce heating and domestic hot water for heating demand-dominated climates is assessed is evaluated. The evaluation is conducted using the life cycle assessment (LCA) methodology and the ReCiPe and IPCC GWP indicators for the manufacturing and operation stages, and comparing the system to a reference one. Results show that the innovative system has a lower overall impact than the reference one. Moreover, a parametric study to evaluate the impact of the refrigerant is carried out, showing that the impact of the overall systems is not affected if the amount of refrigerant or the impact of refrigerant is increased.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Sign in / Sign up

Export Citation Format

Share Document