scholarly journals Application of Factor Analysis for Characterizing the Relationships between Groundwater Quality and Land Use in Taiwan’s Pingtung Plain

2020 ◽  
Vol 12 (24) ◽  
pp. 10608
Author(s):  
Ching-Ping Liang ◽  
Chia-Hui Wang ◽  
Sheng-Wei Wang ◽  
Ta-Wei Chang ◽  
Jui-Sheng Chen

Although the average municipal water coverage in Taiwan is quite high, at 93.91%, only around half of the residents in the Pingtung Plain use tap water originating from the Taiwan Water Corporation to meet their needs. This means the exploitation of a substantial amount of groundwater as a source of water to meet drinking, agriculture, aquaculture, and industry requirements. Long-term groundwater quality surveys in Taiwan have revealed obvious contamination of the groundwater in several locations in the Pingtung Plain, with measured concentration levels of some groundwater quality parameters in excess of the permissible levels specified by the Taiwan Environmental Protection Administration. Clearly, establishing a sound plan for groundwater quality protection in this area is imperative for maximizing the protection of human health. The inappropriate use of hazardous chemicals and poor management of land use have allowed pollutants to permeate through unsaturated soil and ultimately reach the underlying shallow unconfined groundwater system. Thus, the quality of the water stored in shallow aquifers has been significantly affected by land use. This study is designed to characterize the relationship between groundwater quality and land use in the Pingtung Plain. This goal is achieved by the application of factor analysis to characterize the measured concentrations of 14 groundwater quality parameters sampled from 46 observation wells, the area percentages for nine land use categories in the neighborhood of these 46 observation wells, and the thicknesses of four unsaturated types of soil based on core samples obtained during the establishment of 46 observation wells. The results show that a four-factor model can explain 56% of the total variance. Factor 1 (seawater salinization), which includes the groundwater quality parameters of EC, SO42−, Cl−, Ca2+, Mg2+, Na+, and K+, shows a moderate correlation to land used for water conservation. Factor 2 (nitrate pollution), which includes the groundwater quality parameters of NO3−-N and HCO3−, shows a strong correlation to land used for fruit farming and a moderate correlation to the thickness of the gravel comprising unsaturated soil. Factor 3 (arsenic pollution), which is composed of groundwater quality parameters of total organic carbon (TOC) and As, is very weakly affected by land use. Factor 4 (reductive dissolution of Fe3+ and Mn2+), which involves Mn2+ and Fe3+, is weakly impacted by land use. Based on a geographic visualization of the scores for the four different factors and the patterns for land use, we can demarcate the areas where the groundwater in shallow unconfined aquifers is more vulnerable to being polluted by specific contaminants. We can then prioritize the areas where more intensive monitoring might be required, evaluate current land use practices, and adopt new measures to better prevent or control groundwater pollution.

Author(s):  
Yaqoob Iqbal Memon ◽  
Sundus Saeed Qureshi ◽  
Imdad Ali Kandhar ◽  
Naeem Ahmed Qureshi ◽  
Sumbul Saeed ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sadik Mahammad ◽  
Aznarul Islam

AbstractIn recent years, groundwater pollution has become increasingly a serious environmental problem throughout the world due to increasing dependency on it for various purposes. The Damodar Fan Delta is one of the agriculture-dominated areas in West Bengal especially for rice cultivation and it has a serious constraint regarding groundwater quantity and quality. The present study aims to evaluate the groundwater quality parameters and spatial variation of groundwater quality index (GWQI) for 2019 using the fuzzy analytic hierarchy process (FAHP) method. The 12 water quality parameters such as pH, TDS, iron (Fe−) and fluoride (F−), major anions (SO42−, Cl−, NO3−, and HCO3−), and cations (Na+, Ca2+, Mg2+, and K+) for the 29 sample wells of the study area were used for constructing the GWQI. This study used the FAHP method to define the weights of the different parameters for the GWQI. The results reveal that the bicarbonate content of 51% of sample wells exceeds the acceptable limit of drinking water, which is maximum in the study area. Furthermore, higher concentrations of TDS, pH, fluoride, chloride, calcium, magnesium, and sodium are found in few locations while nitrate and sulfate contents of all sample wells fall under the acceptable limits. The result shows that 13.79% of the samples are excellent, 68.97% of the samples are very good, 13.79% of the samples are poor, and 3.45% of the samples are very poor for drinking purposes. Moreover, it is observed that very poor quality water samples are located in the eastern part and the poor water wells are located in the northwestern and eastern part while excellent water quality wells are located in the western and central part of the study area. The understanding of the groundwater quality can help the policymakers for the proper management of water resources in the study area.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3841
Author(s):  
Józef Ober ◽  
Janusz Karwot

Security of supply of water, which meets the quality parameters specified in applicable standards, is now the basis for the functioning of most societies. In addition to climatic, biological, chemical, and physical hazards, it is worth paying attention to consumers’ subjective perception of the quality of tap water supplied in the area of Poland. The article discusses various activities related to water resources management and analyses the results of an evaluation of selected quality parameters of tap water in Poland. A novelty on a European scale here is an examination of the evaluation of these parameters based on potential seasonal differences (spring, summer, autumn, winter). For the first time in the world literature, PROFIT analysis was used to evaluate selected parameters of tap water quality. The aim of the article was to present a model for the evaluation of the parameters of tap water supplied in different seasons of the year in Poland. Due to the complexity of the research aspects, a mixed-methods research procedure was used in which a literature review was combined with a survey and statistical analysis. For the purpose of the survey, an original survey questionnaire called “Survey of customer opinions on selected parameters of tap water supplied in Poland” was developed especially for this study. The conducted research confirmed the adopted hypothesis that the results of evaluation of selected tap water parameters vary depending on the period (spring, summer, autumn, winter) in Poland. The model developed by means of PROFIT analysis makes it possible to highlight to water suppliers the specific quality parameters in particular seasons of the year (spring, summer, autumn, winter), which may improve the quality of water supplied in Poland and thus, in the long-term perspective, increase the level of satisfaction of water recipients and confidence in drinking tap water in Poland.


2020 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Tianshi Pan ◽  
Lijun Zuo ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Feifei Sun ◽  
...  

The implementation of ecological projects can largely change regional land use patterns, in turn altering the local hydrological process. Articulating these changes and their effects on ecosystem services, such as water conservation, is critical to understanding the impacts of land use activities and in directing future land planning toward regional sustainable development. Taking Zhangjiakou City of the Yongding River as the study area—a region with implementation of various ecological projects—the impact of land use changes on various hydrological components and water conservation capacity from 2000 to 2015 was simulated based on a soil and water assessment tool model (SWAT). An empirical regression model based on partial least squares was established to explore the contribution of different land use changes on water conservation. With special focus on the forest having the most complex effects on the hydrological process, the impacts of forest type and age on the water conservation capacity are discussed on different scales. Results show that between 2000 and 2015, the area of forest, grassland and cultivated land decreased by 0.05%, 0.98% and 1.64%, respectively, which reduces the regional evapotranspiration (0.48%) and soil water content (0.72%). The increase in settlement area (42.23%) is the main reason for the increase in water yield (14.52%). Most land use covered by vegetation has strong water conservation capacity, and the water conservation capacity of the forest is particularly outstanding. Farmland and settlements tend to have a negative effect on water conservation. The water conservation capacity of forest at all scales decreased significantly with the growth of forest (p < 0.05), while the water conservation capacity of different tree species had no significant difference. For the study area, increasing the forest area will be an effective way to improve the water conservation function, planting evergreen conifers can rapidly improve the regional water conservation capacity, while planting deciduous conifers is of great benefit to long-term sustainable development.


Sign in / Sign up

Export Citation Format

Share Document