scholarly journals Risk-Informed Performance-Based Metrics for Evaluating the Structural Safety and Serviceability of Constructed Assets against Natural Disasters

2021 ◽  
Vol 13 (11) ◽  
pp. 5925
Author(s):  
Nuno Marques de Almeida ◽  
Maria João Falcão Silva ◽  
Filipa Salvado ◽  
Hugo Rodrigues ◽  
Damjan Maletič

The tangible and intangible value derived from the built environment is of great importance. This raises concerns related to the resilience of constructed assets to both human-made and natural disasters. Consideration of these concerns is present in the countless decisions made by various stakeholders during the decades-long life cycle of this type of physical asset. This paper addresses these issues from the standpoint of the engineering aspects that must be managed to enhance the structural safety and serviceability of buildings against natural disasters. It presents risk-informed performance-based parameterization strategies and evaluation criteria as well as design methods to embed differentiated levels of structural safety and serviceability of buildings against wind, snow, earthquakes and other natural agents. The proposed approach enables designers to assure the resilience and reliability of building structures against natural risks.

2021 ◽  
Vol 13 (11) ◽  
pp. 6452
Author(s):  
Vesna Kosorić ◽  
Siu-Kit Lau ◽  
Abel Tablada ◽  
Monika Bieri ◽  
André M. Nobre

Based on the findings from a recent study by the authors which examined factors affecting diffusion of photovoltaics (PV), while comprehensively considering the local PV and construction industry as well as characteristics of the built environment, this paper proposes a holistic strategy for PV implementation into Singapore’s built environment. It consists of (1) a multilevel mechanism framework, encompassing eleven mechanism categories of instruments and activities and (2) a general design framework including design principles, general project instructions and the main design guidelines. Relying on a survey conducted among PV experts on established mechanisms, the present study suggests that building codes (e.g., fire safety, structural safety, etc.) and initiatives and incentives related to PV/building-integrated photovoltaics (BIPV) should be the highest priority for authorities, followed by assessment of BIPV/PV properties, working toward social acceptance, conducting research projects and information exchange, and education and training activities. Considering all three pillars of sustainability, the design framework is based on the following interrelated design principles: (1) compatibility and coherence with the local context, (2) technical soundness, (3) economic viability, (4) user-centered design, (5) connecting with community and socio-cultural context, and (6) adaptability and flexibility. Despite Singapore’s scarcity of land, the established design guidelines cover a wide spectrum of solutions, including PV integration into both buildings and non-building structures. The synthesis of the two interconnected and inseparable frameworks aims to create an environment conducive to long-term widespread PV integration and stimulate the deployment of BIPV, which should help Singapore and other cities reduce their dependency on imported fossil fuels, while also making them more livable and enjoyable.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


Buildings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Klara Kroftova

An urban residential building from the second half of the 19th century and the start of the 20th century, the so-called tenement house, is a significant representative of the architecture of the developing urban fabric in Central Europe. The vertical and horizontal load-bearing structures of these houses currently tend to show characteristic, repeated defects and failures. Their knowledge may, in many cases, facilitate and speed up the design of the historic building’s restoration without compromising its heritage value in this process. The article presents the summary of the most frequently occurring defects and failures of these buildings. The summary, however, is not an absolute one, and, in the case of major damage to the building, it still applies that, first of all, a detailed analysis of the causes and consequences of defects and failures must be made as a basic prerequisite for the reliability and long-term durability of the building’s restoration and rehabilitation. An integral part of the rehabilitation of buildings must be the elimination of the causes of the appearance of their failures and remediation of all defects impairing their structural safety, health safety and energy efficiency.


Buildings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Umair Hasan ◽  
Andrew Whyte ◽  
Hamad Al Jassmi

Public transport can discourage individual car usage as a life-cycle asset management strategy towards carbon neutrality. An effective public transport system contributes greatly to the wider goal of a sustainable built environment, provided the critical transit system attributes are measured and addressed to (continue to) improve commuter uptake of public systems by residents living and working in local communities. Travel data from intra-city travellers can advise discrete policy recommendations based on a residential area or development’s public transport demand. Commuter segments related to travelling frequency, satisfaction from service level, and its value for money are evaluated to extract econometric models/association rules. A data mining algorithm with minimum confidence, support, interest, syntactic constraints and meaningfulness measure as inputs is designed to exploit a large set of 31 variables collected for 1,520 respondents, generating 72 models. This methodology presents an alternative to multivariate analyses to find correlations in bigger databases of categorical variables. Results here augment literature by highlighting traveller perceptions related to frequency of buses, journey time, and capacity, as a net positive effect of frequent buses operating on rapid transit routes. Policymakers can address public transport uptake through service frequency variation during peak-hours with resultant reduced car dependence apt to reduce induced life-cycle environmental burdens of buildings by altering residents’ mode choices, and a potential design change of buildings towards a public transit-based, compact, and shared space urban built environment.


2019 ◽  
Vol 11 (13) ◽  
pp. 3512 ◽  
Author(s):  
Antonia Gravagnuolo ◽  
Mariarosaria Angrisano ◽  
Luigi Fusco Girard

The circular city is emerging as new concept and form of practice in sustainable urban development. This is a response to the complex and pressing challenges of urbanization, as highlighted in the New Urban Agenda (NUA). The concept of a “circular city” or “circular city-region” derives from the circular economy model applied in the spatial territorial dimension. It can be associated with the concept of a “self-sustainable” regenerative city, as stated in paragraph n.71 of the NUA. This paper aims to develop an extensive form of “screening” of circular economy actions in emerging circular cities, focusing on eight European historic port cities self-defined as “circular”. The analysis is carried out as a review of circular economy actions in the selected cities, and specifically aims to identify the key areas of implementation in which the investments in the circular economy are more oriented, as well as to analyze the spatial implications of the reuse of buildings and sites, proposing a set of criteria and indicators for ex-ante and ex-post evaluations and monitoring of circular cities. Results show that the built environment (including cultural heritage), energy and mobility, waste management, water management, industrial production (including plastics, textiles, and industry 4.0 and circular design), agri-food, and citizens and communities can be adopted as strategic areas of implementation of the circular city model in historic cities, highlighting a lack of indicators in some sectors and identifying a possible framework for “closed” urban metabolism evaluation from a life-cycle perspective, focusing on evaluation criteria and indicators in the (historic) built environment.


2020 ◽  
Vol 0 (21) ◽  
pp. 0-0
Author(s):  
Serkan PALABIYIK ◽  
Derya DEMİRCAN

Aim: Evolution process in information and communication technologies, architectural design and therefore in the field of architecture; It goes from product representation and communication use, which can be modeled in the computer environment, to the processing of data, information and information, to support creativity and decision making, an activity specific to human mental processes. In this process, many computational design methods have been developed that play an important role in contemporary design practices and guide the change of design culture in recent years. The top aim in this study presented; It is the evaluation of the methods developed in the field of computational design through the life cycle model. Method: At the point of investigating the spread and usage of the design methods included in the study within the sample area, bibliometric analysis, and content analysis methods, which are used to evaluate scientific studies, was used to draw repeatable and valid results regarding the content of the examined text. Results: The study shows that the most published design methods in the computational design are simulation-based design, structure information modeling, shape grammars, and genetic algorithms, respectively. In addition, it is determined that the most preferred international congress in this field is eCAADe. According to the evaluation of the total number of publications in this field, the contribution of Turkish researchers to the field was found to be 3%. Conclusion: This study evaluated when the upper scale, which are related to computational design methods in Turkey, we can conclude that there is insufficient scientific studies. In order to be able to use the rapidly developing computational design tools more effectively, to improve the computational design ability and to reflect the education process in the design process, it is important to have a voice in the architecture of the future.


2016 ◽  
Vol 9 (5) ◽  
pp. 991 ◽  
Author(s):  
Orlando Duran ◽  
Irene Roda ◽  
Marco Macchi

Purpose: This manuscript explores the link between Spare Parts Management and Total Costs of Ownership or Life Cycle Costs (LCC).Design/methodology/approach: First, this work enumerates the different managerial decisions instances in spare parts management that are present during the life cycle of a physical asset. Second, we analyse how those decision instances could affect the TCO of a physical asset (from the economic point of view). Finally, we propose a conceptual framework for incorporating the spare parts management into a TCO model.Findings: The recent literature lacks discussions on the integration of spare parts management with the Total Costs of Ownership (TCO). Based in an extensive literature revision we can declare that the computation of costs related to spare parts management has been neglected by TCO models.Originality/value: The contribution of this paper is twofold. First, a literature review and identification of a series of spare parts management decision instances and its relationship with TCOs is presented in this paper. Second, a conceptual framework is suggested for linking those decisions instances to a total cost of ownership perspective. Some research questions and future research challenges are presented at the end of this work.


2004 ◽  
Vol 2004.14 (0) ◽  
pp. 455-458
Author(s):  
Katsuya NAGATA ◽  
Makoto NOTOMI ◽  
Hiroshi ONODA ◽  
Shinsaku KOSUGE ◽  
Koji SATO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document