scholarly journals Spatio-Temporal Change of Land Use in a Coastal Reclamation Area: A Complex Network Approach

2021 ◽  
Vol 13 (16) ◽  
pp. 8690
Author(s):  
Caiyao Xu ◽  
Lijie Pu ◽  
Fanbin Kong ◽  
Bowei Li

Coastal ecological protection and restoration projects aimed to restore and recover the ecological environment of coastal wetland with high-intensity human reclamation activity, while the integrity of the coastal wetland system with human reclamation activity and the ability of individual land use types to control the overall system were not fully considered. In this study, a six-stage land use conversion network was constructed by using a complex network model to analyze coastal land use dynamic changes in the coastal reclamation area located in eastern China from 1977 to 2016. The results showed that land use types had gradually transformed from being dominated by natural types to artificial types, and the speed of transformation was accelerating. The proportion of un-reclaimed area decreased from 93% in 1977 to 46% in 2007, and finally fell to 8% in 2014 and 2016. Tidal flat and halophytic vegetation were the main output land use types, while cropland, woodland and aquaculture pond were the main input land use types. Cropland had the highest value of betweenness centrality, which played a key role in land use change from 1992 to 2014. The land use system of the coastal reclamation area was the most stable in 2002–2007, followed by 1984–1992, and the most unstable in 2007–2014. The Chinese and local government should carry out some measures to improve the land use in coastal wetland ecosystems, including the allocation and integration of land use for production space, living space, and ecological space, and develop multi-functionality of land use to realize the coastal high-quality development and coastal ecological protection and restoration.

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 845
Author(s):  
Binbin Chang ◽  
Lei Chen

Economic development, environmental protection and land resources are important components in sustainable cities. According to the environmental Kuznets curve, developing countries are prone to environmental pollution problems while developing their economies. At the same time, as urbanization progresses, the problem of inadequate land resources and land use efficiency in China is coming to the fore. Although China is a developing country, it began to actively implement environmental protection measures years ago in an effort to transform itself into an innovative country. Therefore, as an economic and policy pioneer region, can eastern China benefit from all three aspects of land–economy–environment at the same time? Or will the increase in land economic efficiency (Land_EcoE) and the improvement of environmental pollution occur simultaneously? With the characteristics of land use efficiency and other concepts, this study combines economic factors and land factors to establish a Land_EcoE evaluation system. On the basis of mapping the spatio-temporal evolution of carbon emissions and Land_EcoE, and discussing the spatio-temporal evolution characteristics and correlation between them initially and visually by means of geographic data visualization, this study uses the data of 84 prefecture-level cities and municipalities directly under the central government in eastern China from 2011 to 2017 to test the research hypotheses from a quantitative perspective. Specifically, this study analyzes the correlation between Land_EcoE and environmental pollution by constructing a panel regression model. The conclusions show that, in general, the increase in Land_EcoE in eastern China is associated with the increase in carbon emissions. For a group of prefecture-level cities with the most developed economies in eastern China, the increase in Land_EcoE is correlated with the decrease in carbon emissions. Based on this research, this study proposes a series of policy implications on how to promote simultaneous economic–land–environmental benefits.


Author(s):  
Xinjian Chen ◽  
Sihua Huang ◽  
Xuefeng Xie ◽  
Ming Zhu ◽  
Jianguo Li ◽  
...  

Coastal tidelands are important ecological habitat resources and valuable resources for agricultural land reclamation. Enrichment of potentially harmful elements (PHEs) in soil caused by anthropogenic activity is an important factor implicated in the ecological deterioration of soil in China. A total of 54 soil sample sites were selected from a 30-year reclaimed tideland and an adjoining coastal wetland. Descriptive and multivariate statistical analyses were performed to describe the enrichment, source, health risk status of eight PHEs (As, Co, Cr, Cu, Mn, Ni, Pb, and Zn) after long-term reclamation. Results indicated that after 30 years of reclamation, most soil PHEs are slightly enriched, whereas no serious threat of environmental pollution was observed. In the reclamation area, the enrichment of PHEs in the aquaculture land, industrial land, and cropland was relatively high compared with other land use types, such as tideland and halophyte land. The source analysis divided the PHEs into five categories: (1) Cu; (2) Co and Mn; (3) Cr; (4) As and Pb; (5) Zn and Ni. Cu was completely derived from natural parent materials and other elements were governed by both weathering of parent rock and human activities, including agricultural activities, industrial production, and transportation emissions. The health risk assessment showed that the soil PHEs potentially had no non-carcinogenic risk to the public, but there was an acceptable probability to have cancer due to Cr and As. Meanwhile, children are more susceptible to harm from the PHEs in soil than adults. According to the economic and social development situation in the coastal region, it is necessary to pay attention to the environmental threats of PHEs enrichment.


Author(s):  
Dinghua Ou ◽  
Qi Zhang ◽  
Yijie Wu ◽  
Jing Qin ◽  
Jianguo Xia ◽  
...  

Territorial space classification (TSC) provides the basis for establishing systems of national territory spatial planning (NTSP) and supervising their implementation in China, thus has important theoretical and application significance. Most of the current TSC research is related to land use/land cover classification, ignoring the connection of the NTSP policies and systems, failing to consider the spatiotemporal heterogeneity of land use superior territorial space functions (TSFs) and the dynamic coupling between land use and its superior TSFs on the result of TSC. In this study, we integrated the factors influencing the connection of NTSP policies and systems and established a theoretical framework system of TSC from the perspective of spatial form and functional use. By integrating the q-statistic method with spatiotemporal geographical analysis, we propose a method to construct a TSC system for Qionglai City of Sichuan Province in China based on the spatiotemporal heterogeneity of land use superior TSFs and the dynamic coupling between land use and its superior TSFs. It makes up for the deficiency of directly taking land use/land cover classification as TSC and solves the problems of ignoring the spatiotemporal heterogeneity of land use superior TSFs and the dynamic coupling between land use and its superior TSFs. Using this method, we found that the TSC of Qionglai City consists of 3, 7, and 14 first-, second-, and third-level space types, respectively. The key findings from this study are that land use superior TSFs show spatiotemporal heterogeneity in Qionglai, and coupling effects in spatial distribution were noted between land use types and their superior TSFs, as was temporal heterogeneity in the coupling degree and the structure of the TSFs corresponding to the land use types, which show obvious dynamics and non-stationarity of the functional structure. These findings confirm the necessity of considering the spatiotemporal heterogeneity of land use superior TSFs and the dynamic coupling between land use and its superior TSFs in TSC. This method of establishing a TSC system can be used to address a number of NTSP and management issues, and three examples are provided here: (a) zoning of urban, agricultural, and ecological space; (b) use planning of production, living and ecological space; (c) delimitation of urban development boundary, permanent basic farmland protection redline, and ecological protection redline.


2018 ◽  
Author(s):  
Wen Xu ◽  
Lei Liu ◽  
Miaomiao Cheng ◽  
Yuanhong Zhao ◽  
Lin Zhang ◽  
...  

Abstract. Five-year (2011–2015) measurements of gaseous NH3, NO2 and HNO3 and particulate NH4+ and NO3− in air and/or precipitation were conducted at twenty-seven sites in a Nationwide Nitrogen Deposition Monitoring Network (NNDMN) to better understand spatial and temporal (seasonal and annual) characteristics of reactive nitrogen (Nr) concentrations and deposition in eastern China. Our observations reveal annual average concentrations (16.4–32.6 μg N m−3), dry deposition fluxes (15.8–31.7 kg N ha−1 yr−1) and wet/bulk deposition fluxes (18.4–28.0 kg N ha−1 yr−1) based on land use were ranked as urban > rural > background sites. Annual concentrations and dry deposition fluxes of each Nr species in air were comparable at urban and background sites in northern and southern regions, but were significantly higher at northern rural sites. These results, together with good agreement between spatial distributions of NH3 and NO2 concentrations determined from ground measurements and satellite observations, demonstrate that atmospheric Nr pollution is heavier in the northern region than in the southern region. No significant inter-annual trends were found in the annual Nr dry and wet/bulk N deposition at almost all of the selected sites. A lack of significant changes in annual averages between the 2013–2015 and 2011–2012 periods for all land use types, suggests that any effects of current emission controls are not yet apparent in Nr pollution and deposition in the region. Ambient concentrations of total Nr exhibited a non-significant seasonal variation at all land use types, although significant seasonal variations were found for individual Nr species (e.g., NH3, NO2 and pNO3−) in most cases. In contrast, dry deposition of total Nr exhibited a consistent and significant seasonal variation at all land use types, with the highest fluxes in summer and the lowest in winter. Based on sensitivity tests by the GEOS-Chem model, we found that NH3 emissions from fertilizer use (including chemical and organic fertilizers) were the largest contributor (36 %) to total inorganic Nr deposition over eastern China. Our results not only improve the understanding of spatial-temporal variations of Nr concentrations and deposition in this pollution hotspot, but also provide useful information for policy-makers that mitigation of NH3 emissions should be a priority to tackle serious N deposition in eastern China.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wen Yang ◽  
Nasreen Jeelani ◽  
Andong Cai ◽  
Xiaoli Cheng ◽  
Shuqing An

AbstractCoastal reclamation seriously disturbs coastal wetland ecosystems, while its influences on soil microbial communities remain unclear. In this study, we examined the impacts of coastal reclamation on soil microbial communities based on phospholipid fatty acids (PLFA) analysis following the conversion of Phragmites australis wetlands to different land use types. Coastal reclamation enhanced total soil microbial biomass and various species (i.e., gram-positive bacterial, actinomycete, saturated straight-chain, and branched PLFA) following the conversion of P. australis wetland to aquaculture pond, wheat, and oilseed rape fields. In contrast, it greatly decreased total soil microbial biomass and various species following the conversion of P. australis wetland to town construction land. Coastal reclamation reduced fungal:bacterial PLFA, monounsaturated:branched PLFA ratios, whereas increasing gram-positive:gram-negative PLFA ratio following the conversion of P. australis wetland to other land use types. Our study suggested that coastal reclamation shifted soil microbial communities by altering microbial biomass and community composition. These changes were driven primarily by variations in soil nutrient substrates and physiochemical properties. Changes in soil microbial communities following coastal reclamation impacted the decomposition and accumulation of soil carbon and nitrogen, with potential modification of carbon and nitrogen sinks in the ecosystems, with potential feedbacks in response to climate change.


2020 ◽  
Vol 9 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Romane Berthelin ◽  
Michael Rinderer ◽  
Bartolomé Andreo ◽  
Andy Baker ◽  
Daniela Kilian ◽  
...  

Abstract. Karst systems are characterized by a high subsurface heterogeneity, and their complex recharge processes are difficult to characterize. Experimental methods to study karst systems mostly focus on analysing the entire aquifer. Despite their important role in recharge processes, the soil and epikarst receive limited attention, and the few available studies were performed at sites of similar latitudes. In this paper, we describe a new monitoring network that allows for the improvement of the understanding of soil and epikarst processes by including different karst systems with different land-cover types in different climate regions. Here, we present preliminary data form the network and elaborate on their potential to answer research questions about the role of soil and epikarst on karstic water flow and storage. The network measures soil moisture at multiple points and depths to understand the partitioning of rainfall into infiltration, evapotranspiration, and groundwater recharge processes. We installed soil moisture probes at five different climate regions: Puerto Rico (tropical), Spain (Mediterranean), the United Kingdom (humid oceanic), Germany (humid mountainous), and Australia (dry semi-arid). At each of the five sites, we defined two 20 m×20 m plots with different land-use types (forest and grassland). At each plot, 15 soil moisture profiles were randomly selected and probes at different depths from the topsoil to the epikarst (in total over 400 soil moisture probes) were installed. Covering the spatio-temporal variability of flow processes through a large number of profiles, our monitoring network will allow researchers to develop a new conceptual understanding of evapotranspiration and groundwater recharge processes in karst regions across different climate regions and land-use types, and this will provide the base for quantitative assessment with physically based modelling approaches in the future.


Sign in / Sign up

Export Citation Format

Share Document