scholarly journals Advances in the Application of Nanocatalysts in Photocatalytic Processes for the Treatment of Food Dyes: A Review

2021 ◽  
Vol 13 (21) ◽  
pp. 11676
Author(s):  
Jennifer María Navia-Mendoza ◽  
Otoniel Anacleto Estrela Filho ◽  
Luis Angel Zambrano-Intriago ◽  
Naga Raju Maddela ◽  
Marta Maria Menezes Bezerra Duarte ◽  
...  

The use of food additives (such as dyes, which improve the appearance of the products) has become more prominent, due to the rapid population growth and the increase in demand for beverages and processed foods. The dyes are usually found in effluents that are discharged into the environment without previous treatment; this promotes mass contamination and alters the aquatic environment. In recent years, advanced oxidation processes (AOPs) have proven to be effective technologies used for wastewater treatment through the destruction of the total organic content of toxic contaminants, including food dyes. Studies have shown that the introduction of catalysts in AOPs improve treatment efficiency (i.e., complete decomposition without secondary contamination). The present review offers a quick reference for researchers, regarding the treatment of wastewater containing food dyes and the different types of AOPs, with different catalyst and nanocatalyst materials obtained from traditional and green chemical syntheses.

1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


1994 ◽  
Vol 19 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Lisa A. Pescara-Kovach ◽  
Kristi Alexander

One prevailing conceptualization of negative behavior is that it can be linked to allergic food reactions. Early historical examinations of food dyes and additives claimed that a link was evident. However, recent research has since shown no connection between food additives and adversive behavior. Past and current research on the effects of foods ingested on hyperactivity and other negative behaviors is examined in this article. Methods for informing the public of the findings are discussed.


2021 ◽  
Author(s):  
Ho-Cheng Wu ◽  
Yih-Fung Chen ◽  
Ming-Jen Cheng ◽  
Ming-Der Wu ◽  
Yen-Lin Chen ◽  
...  

The mold Monascus has been used as the natural food coloring agent and food additives for more than 1,000 years in Asian countries. In Chinese herbology, it was also used...


2018 ◽  
Vol 81 (10) ◽  
pp. 1723-1728 ◽  
Author(s):  
STEVE L. TAYLOR ◽  
JULIE A. NORDLEE ◽  
SHYAMALI JAYASENA ◽  
JOSEPH L. BAUMERT

ABSTRACT A portable, handheld gluten detection device, the Nima sensor, is now available for consumers wishing to determine if gluten is present in food. By U.S. regulation, gluten-free foods should contain <20 ppm of gluten. Thirteen gluten-free foods (muffins, three different types of bread, three different types of pasta, puffed corn snack, ice cream, meatballs, vinegar and oil salad dressing, oatmeal, and dark chocolate) were prepared; each food was spiked on a weight to weight basis with gluten levels of 0, 5, 10, 20, 30, 40, and 100 ppm before processing or preparation. Unprocessed and processed foods were tested with the handheld gluten sensor and by two gluten-specific enzyme-linked immunosorbent assays (ELISAs) on the basis of the R5 and G12 monoclonal antibodies, respectively. The portable gluten detection device detected gluten in all food types at the 30-ppm addition level, failing to detect gluten in only 5 (6.4%) of 78 subsamples. At the 20-ppm addition level, the portable gluten detection device failed to detect gluten in one type of pasta but detected gluten residues in 63 (87.5%) of 72 other subsamples. The device was able to detect gluten at the 10-ppm addition level in 9 of the 13 food matrices (41 of 54 subsamples, 75.9%) but not in the three types of pasta and the puffed corn snack. The gluten-sensing device did not perform reliably at the 5-ppm addition level in 11 of 13 food matrices (exceptions: ice cream and muffins). In contrast, the ELISA methods were highly reliable at gluten addition levels of ≥10 ppm in all food matrices. The portable gluten detection device yielded a low percentage of false-positive results (4 of 111, 3.6%) in these food matrices. Thus, this handheld portable gluten sensor performed reliably in the detection of gluten in foods having ≥20 ppm of added gluten with only 18 (5.9%) of 306 failures, if results of the one type of pasta are excluded. The device worked with greater reliability as the gluten levels in the foods increased.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 248 ◽  
Author(s):  
Minjung Song ◽  
Juhee Park ◽  
Jihyun Lee ◽  
Heejae Suh ◽  
Hyunjung Lee ◽  
...  

An analytical method to measure solubilized orthophosphate ions (HPO42− and PO43− ) from the water-insoluble food additives calcium phosphate dibasic (DCP) and calcium phosphate tribasic (TCP) in processed foods was optimized by comparing ion chromatography (IC) coupled with DS6 conductivity detector (Cond.) and high-performance liquid chromatography (HPLC) with Evaporative light scattering detector (ELSD) methods. The ion-pairing HPLC method could analyze calcium and phosphate ions successively. However, this method exhibited low reproducibility after approximately 48 hours of measurements. The IC method was established as an effective method of measuring orthophosphate ions with high reproducibility using distilled water and KOH solution as the mobile phase with a Dionex column. Matrix-based limit of detections (LOD) and limit of quantifications (LOQ) for snacks and cereals were estimated in the range of 0.01–0.91 µg/mL and 0.21–2.74 µg/mL, respectively. In inter-day and intra-day tests, the calculated precision (%RSD) and accuracy (recovery %) ranged from 0.5% to 6.6% and 82% to 117%, respectively, in both food samples. The levels of DCP or TCP could be analyzed in various positive food samples, and the developed IC method demonstrated good applicability in the analysis of DCP and TCP in collected processed foods.


2014 ◽  
Vol 24 (1) ◽  
pp. 13-19.e1 ◽  
Author(s):  
Anna Carrigan ◽  
Andrew Klinger ◽  
Suzanne S. Choquette ◽  
Alexandra Luzuriaga-McPherson ◽  
Emmy K. Bell ◽  
...  

Author(s):  
Sara Jarmakiewicz - Czaja ◽  
Dominika Piątek ◽  
Rafał Filip

Various types of food additives are widely used in the food industry. Due to their properties extending the usefulness for consuming food products, they give them different colours, consistency, or taste. The products are marked ‘E’ and the code is assigned to the subscription used. Many of the supplements affect human health negatively. Emulsifiers or stabilizers can lead to epithelial loads and the development of inflammation. Sucrose and other sweeteners may change the composition of the intestinal microflora and thus lead to intestinal blockage. Some additives classified as preservatives are available and may predispose to intestinal dysbiosis. Available substances belonging to food dyes may predispose to genotoxic and cytotoxic effects and cause inflammation in the intestines. Substances added to food can also cause disorders of intestinal homeostasis.


2019 ◽  
Vol 49 (5) ◽  
pp. 955-964
Author(s):  
Elif Inan-Eroglu ◽  
Aylin Ayaz

PurposeRecent evidence suggests that especially processed foods may lead to undesirable metabolic effects in gut microbiota. The emulsifiers and artificial sweeteners that are added to processed foods may play a role in the progression of the diseases through the modulation of microbiota in mice. In this context, the purpose of this paper is to evaluate the effects of emulsifiers and artificial sweeteners.Design/methodology/approachThis paper presents a narrative review of the effects of emulsifiers and artificial sweeteners which are mainly in consumed in the Western diet, to the gut microbiota by mainly focusing on the experimental studies.FindingsAlthoughin vivostudies and animal model studies showed various adverse effects of sweeteners and emulsifiers to microbiota, studies should be conducted in humans to investigate the effects of these food additives to human microbiota by making dietary interventions in the context of ethical rules.Originality/valueIn future, studies will allow us to draw more definitive conclusion whether human population consuming sweeteners and emulsifiers are at risk.


Sign in / Sign up

Export Citation Format

Share Document