scholarly journals Performance of Concrete Pavement Incorporating Portland Limestone Cement in Cold Weather

2021 ◽  
Vol 14 (1) ◽  
pp. 183
Author(s):  
Ahmed Yasien ◽  
Ahmed Ghazy ◽  
Mohamed Bassuoni

The City of Winnipeg (COW) and the University of Manitoba (UM), Canada, have partnered since 2015 to conduct research on the use of portland limestone cement (PLC), comprising up to 15% limestone filler, in transportation infrastructure such as pavements and bridges. Laboratory tests have substantiated the equivalent or superior resistance of concrete made from PLC, relative to that made from general use (GU) cement (Type I) to durability exposures including acids, sulfate salts and chloride-based deicing salts. Subsequently, a field trial was done in 2018, which involved casting two concrete pavement sections made from PLC and GU cement in Winnipeg, Manitoba, Canada. The current paper reports on the construction and long-term (three years/winter seasons) properties of these pavement sections including fresh properties, strength, absorption and chloride ions penetrability, as well as microstructural features. Cores were taken from mid-slabs and at joints, which are the most vulnerable locations to damage in concrete pavements. The field trial results showed that concrete pavement sections made with PLC had equivalent or superior performance compared with those made of GU in terms of fresh, hardened and durability properties. Thus, it presents a viable option for sustainable construction of concrete flatwork in cold regions.

2012 ◽  
Vol 2290 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Michael Thomas ◽  
Laurent Barcelo ◽  
Bruce Blair ◽  
Kevin Cail ◽  
Anik Delagrave ◽  
...  

Significant efforts have been made to reduce carbon dioxide (CO2) emissions associated with the manufacture of portland cement, primarily by making the process more energy efficient and increasing the use of alternative fuels. Further reductions in CO2 can be achieved by lowering the clinker component of the cement because the pyroprocessing used to manufacture clinker produces approximately 1 tonne of CO2 for every tonne of clinker. Traditionally reductions in the clinker content of cement have been achieved by producing blended cement consisting of portland cement combined with a supplementary cementing material (SCM). In Canada, it is now permitted to intergrind up to 15% limestone with cement clinker to produce portland limestone cement or blended portland limestone cement. Recent trials were conducted at the Brookfield cement plant in Nova Scotia to evaluate the performance of a blended cement containing 15% ground, granulated blast furnace slag (an SCM) with that of a blended portland limestone cement containing the same amount of slag plus 12% interground limestone. Performance was evaluated by the construction of a section of concrete pavement using concrete mixtures produced with the two cements and various amounts of fly ash (another SCM). A wide range of laboratory tests were performed on the concrete specimens cast on site during the placement of the concrete pavement. The results indicated that the cements were of equivalent performance.


2018 ◽  
Vol 162 ◽  
pp. 02021
Author(s):  
Basil Al-Shathr ◽  
Ammar Abdulameer ◽  
Tareq al-Attar

The ambient temperature records in Iraq show a large variation between day and night reaching 20 C, depending on the season, whether it is summer or winter. For this reason, the aim of this research is to study the effect of these conditions on the drying shrinkage of self-compacting concrete produced by using Portland-Limestone cement (ASTM C595 - Type IL). SCC mixes were designed to attain compressive strengths of 40 and 60MPa at 28days with and without silica fume respectively. Same mixes were reproduced with ordinary Portland cement (ASTM C150 - Type I) for comparisons. Two maximum sizes of aggregate 10 and 20 mm were incorporated in this work. The drying shrinkage was measured for 180 days after 7 days of water curing. The range of ambient (outdoor) temperature variation was from - 4 to + 39°C and the relative humidity ranged from 15 to 60 %. The results of this exposure were compared to that of specimens kept in the shrinkage chamber, with a temperature of 21°C and relative humidity 35%. The current results showed that due to the irreversible nature of shrinkage strain, the drop of ambient temperature and the rise of atmosphere moisture or relative humidity would not reverse the shrinkage strain. It is important to figure the final total accumulated strain when dealing with ambient temperature variation. The drying shrinkage characteristics for concrete made with Type IL cement, are found similar to that for concrete produced with Type I cement.


2020 ◽  
Vol 13 (6) ◽  
pp. 679-685
Author(s):  
Hung-Wen Chung ◽  
Thanachart Subgranon ◽  
Mang Tia

AbstractA high cementitious paste volume (CPV) can increase the early cracking tendency of the concrete and reduce the durability of concrete pavement. This study investigated the effects of minimized CPV in slipformed pavement concrete (SPC) with blended aggregates (BA). Based on the laboratory results, the performance of pavement concrete with different CPV was evaluated. The CPV of standard SPC can be reduced to 25.0% without affecting its properties as evaluated by compressive strength, drying shrinkage and surface resistivity tests However, the CPV of SPC with optimized aggregate gradation (OAG) using BA technique can be further reduced to 22.5% with satisfactory properties. The SPC mixes with OAG was noted to have better potential performance as a pavement concrete. SPC concrete using Portland limestone cement can give similar properties as those of the conventional concrete using ordinary Portland cement.


2010 ◽  
Vol 636-637 ◽  
pp. 1355-1361 ◽  
Author(s):  
Sotiris Tsivilis ◽  
A. Asprogerakas

In this paper the diffusion of chloride ions through limestone cement concrete is studied. The Portland limestone cements have many benefits and the new European Standard EN 197-1 identifies 4 types of Portland limestone cement containing 6-20% limestone (types II/A-L and II/A-LL) and 21-35% limestone (types II/B-L and II/B-LL), respectively. Portland limestone cements of different fineness and limestone content (0-35% w/w) have been produced by inter-grinding clinker, gypsum and limestone. Six concrete mixtures were prepared and the Nordtest Method (accelerated chloride penetration) was applied for the determination of penetration parameters for estimating the resistance against chloride penetration into hardened concrete. The diffusion equation of Fick’s second law was used for the determination of the effective chloride transport coefficient. It is concluded that Portland limestone cement concrete indicates competitive behavior with the Portland cement concrete. Limestone content up to 15% has a positive effect on the concrete resistance against chloride penetration.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 905 ◽  
Author(s):  
Lochana Poudyal ◽  
Kushal Adhikari ◽  
Moon Won

Despite lower environmental impacts, the use of Portland Limestone Cement (PLC) concrete has been limited due to its reduced later age strength and compromised durability properties. This research evaluates the effects of nano calcium carbonate (CaCO3) on the performance of PLC concrete. The study follows a series of experiments on the fresh, hardened, and durability properties of PLC concrete with different replacement rates of nano CaCO3. Incorporation of 1% nano CaCO3 into PLC concrete provided the optimal performance, where the 56 days compressive strength was increased by approximately 7%, and the permeability was reduced by approximately 13% as compared to Ordinary Portland Cement (OPC) concrete. Further, improvements were observed in other durability aspects such as Alkali-Silica Reaction (ASR) and scaling resistance. Additionally, nano CaCO3 has the potential to be produced within the cement plant while utilizing the CO2 emissions from the cement industries. The integration of nanotechnology in PLC concrete thus will help produce a more environment-friendly concrete with enhanced performance. More in-depth study on commercial production of nano CaCO3 thus has the potential to offer a new generation cement—sustainable, economical, and durable cement—leading towards green infrastructure and global environmental sustainability.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Athanasios Malakopoulos ◽  
Manolis Chatzigeorgiou ◽  
Nikos Boukos ◽  
Athanasios Salifoglou

Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 145-148 ◽  
Author(s):  
Hao Cui ◽  
Richen Zhong ◽  
Yuling Xie ◽  
Xueyin Yuan ◽  
Weihua Liu ◽  
...  

Abstract The presence of sulfate-rich fluids in natural magmatic hydrothermal systems and some carbonatite-related rare earth element (REE) deposits is paradoxical, because sulfate salts are known for their retrograde solubility, implying that they should be insoluble in high-temperature geofluids. Here, we show that the presence of quartz can significantly change the dissolution behavior of Na2SO4, leading to the formation of extremely sulfate-rich fluids (at least 42.8 wt% Na2SO4) at temperatures >∼330 °C. The elevated Na2SO4 solubility results from prograde dissolution of immiscible sulfate melt, the water-saturated solidus of which decreases from ≥∼450 °C in the binary Na2SO4-H2O system to ∼270 °C in the presence of silica. This implies that sulfate-rich fluids should be common in quartz-saturated crustal environments. Furthermore, we found that the sulfate-rich fluid is a highly effective medium for Nd mobilization. Thermodynamic modeling predicts that sulfate ions are more effective in complexing REE(III) than chloride ions. This reinforces the idea that REEs can be transported as sulfate complexes in sulfate-rich fluids, providing an alternative to the current REE transport paradigm, wherein chloride complexing accounts for REE solubility in ore fluids.


2018 ◽  
Vol 14 (3) ◽  
pp. 68-80
Author(s):  
Zainab Ahmed Al-kaissi ◽  
Mohammed Hashim Mohammed ◽  
Nabaa Sattar Kareem

This paper deals with load-deflection behavior the jointed plain concrete pavement system using steel dowel bars as a mechanism to transmit load across the expansion joints. Experimentally, four models of the jointed plain concrete pavement system were made, each model consists of two slabs of plain concrete that connected together across expansion by two dowel bars and the concrete slab were supported by the subgrade soil. Two variables were dealt with, the first is diameter of dowel bar (12, 16 and 20 mm) and the second is type of the subgrade soil, two types of soil were used which classified according to the (AASHTO): Type I (A-6) and type II (A-7-6). Experimental results showed that increasing dowel bar diameter from 12 mm to 20 mm has a little effect on load-deflection behavior of the tested specimens with only 5% increase in failure load. This may be attributed to that the failure (caused by flexural crack) depends mainly on concrete strength. Results also showed that decreasing CBR value of subgrade soil from 7% to 5% decreases failure load by about 33%.


Sign in / Sign up

Export Citation Format

Share Document