scholarly journals Cyclic Voltammetry Characterization of Au, Pd, and AuPd Nanoparticles Supported on Different Carbon Nanofibers

Surfaces ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Anna Testolin ◽  
Stefano Cattaneo ◽  
Wu Wang ◽  
Di Wang ◽  
Valentina Pifferi ◽  
...  

Three types of carbon nanofibers (pyrolytically stripped carbon nanofibers (PS), low-temperature heat treated carbon nanofibers (LHT), and high-temperature heat treated carbon nanofibers (HHT)) with different graphitization degrees and surface chemistry have been used as support for Au, Pd, or bimetallic AuPd alloy nanoparticles (NPs). The carbon supports have been characterized using Raman, X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Moreover, the morphology of the metal nanoparticles was investigated using transmission electron microscopy (TEM) and CV. The different properties of the carbon-based supports (particularly the graphitization degree) yield different electrochemical behaviors, in terms of potential window widths and electrocatalytic effects. Comparing the electrochemical behavior of monometallic Au and Pd and bimetallic AuPd, it is possible to observe the interaction of the two metals when alloyed. Moreover, we demonstrate that carbon surface has a strong effect on the electrochemical stability of AuPd nanoparticles. By tuning the Au-Pd nanoparticles’ morphology and modulating the surface chemistry of the carbon support, it is possible to obtain materials characterized by novel electrochemical properties. This aspect makes them good candidates to be conveniently applied in different fields.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 362
Author(s):  
Marta Stucchi ◽  
Maela Manzoli ◽  
Filippo Bossola ◽  
Alberto Villa ◽  
Laura Prati

To obtain selective hydrogenation catalysts with low noble metal content, two carbon-supported Mo-Pt bimetallic catalysts have been synthesized from two different molybdenum precursors, i.e., Na2MoO4 and (NH4)6Mo7O24. The results obtained by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) combined with the presence and strength of acid sites clarified the different catalytic behavior toward cinnamaldehyde hydrogenation. After impregnating the carbon support with Mo precursors, each sample was used either as is or treated at 400 °C in N2 flow, as support for Pt nanoparticles (NPs). The heating treatment before Pt deposition had a positive effect on the catalytic performance. Indeed, TEM analyses showed very homogeneously dispersed Pt NPs only when they were deposited on the heat-treated Mo/C supports, and XPS analyses revealed an increase in both the exposure and reduction of Pt, which was probably tuned by different MoO3/MoO2 ratios. Moreover, the different acid properties of the catalysts resulted in different selectivity.


2002 ◽  
Vol 09 (03n04) ◽  
pp. 1443-1452 ◽  
Author(s):  
C. D. HUANG ◽  
Z. T. XIONG ◽  
J. Y. LIN ◽  
K. L. TAN

In this paper we report the electrochemical behavior of heat-treated carbon blacks and Pt/C catalysts. Cyclic voltammetry indicates that the heat-treated carbon black as catalyst support does not improve the Pt/C catalyst's activity for methanol oxidation. An XPS study of a Pt-loaded carbon black indicates that the amounts of oxidized platinum and oxygen-functional groups on catalysts are decreased when the platinum particles are deposited on the heat-treated carbon surface. These changes in the surface and crystalline structural properties of carbon materials lead to the catalytic activity change in methanol electro-oxidation.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1313
Author(s):  
Sofia Capelli ◽  
Ilaria Barlocco ◽  
Federico Maria Scesa ◽  
Xiaohui Huang ◽  
Di Wang ◽  
...  

The hydrogenation reaction of muconic acid, produced from biomass using fermentative processes, to bio-adipic acid is one of the most appealing green emerging chemical process. This reaction can be promoted by catalysts based on a metal belonging to the platinum group, and the use of a second metal can preserve and increase their activity. Pd–Au bimetallic nanoparticle samples supported on high-temperature, heat-treated carbon nanofibers were prepared using the sol immobilization method, changing the Pd–Au molar ratio. These catalysts were characterized by TEM, STEM, and XPS analysis and tested in a batch reactor pressurized with hydrogen, where muconic acid dissolved in water was converted to adipic acid. The synthesized Pd–Au bimetallic catalysts showed higher activity than monometallic Au and Pd material and better stability during the recycling tests. Moreover, the selectivity toward the mono-unsaturated changed by decreasing the Pd/Au molar ratio: the higher the amount of gold, the higher the selectivity toward the intermediates.


1997 ◽  
Vol 15 (4) ◽  
pp. 1937-1942 ◽  
Author(s):  
Yori Izumi ◽  
Kiichiro Kamata ◽  
Masaaki Katoh ◽  
Takeo Ohte ◽  
Akira Kojima

2003 ◽  
Vol 78 (3) ◽  
pp. 670-675 ◽  
Author(s):  
Hongwei Zhu ◽  
Xuesong Li ◽  
Lijie Ci ◽  
Cailu Xu ◽  
Dehai Wu ◽  
...  

2021 ◽  
Author(s):  
Musa O Azeez ◽  
Abdulkadir Tanimu ◽  
Khalid Alhooshani ◽  
Saheed A. Ganiyu

Abstract This study reports the synthesis of mesoporous metal-modified nitrogen doped activated carbon (AC-N-Mo) from date seeds by ZnCl2 activation and its applicability for selective adsorptive desulfurization of dibenzothiophene (DBT). The AC-N-Mo exhibits higher adsorption capacity for DBT at 100 mg-S/L with the maximum value of 99.7% corresponding to 19.94 mg-S/g at room temperature than the unmodified carbon with 17.96 mg-S/g despite its highest surface area and pore volume of 1027 m2g− 1 and 0.55 cm3g− 1 respectively. The adsorption capacity breakthrough follows the order AC-N-Mo > AC-Mo > AC > AC-N. AC-N-Mo also displayed excellent selectivity in the presence of aromatics (toluene, naphthalene and 1-methylisoquinoline). The enhancement in the DBT uptake capacities of AC-N-Mo is attributed to synergy effect of nitrogen heteroatom that aid well dispersion of molybdenum nanoparticles on carbon surface thereby improving its surface chemistry and promising textural characteristics. The kinetic studies showed that the DBT adsorption proceeds via pseudo-second order kinetics while the isotherm revealed that both Freundlich and Langmuir fit the data but Freundlich fit the data more accurately for the best performing adsorbent. The physico-chemical properties (surface area, pore volume, carbon content, particle size etc.) of as-prepared adsorbents namely; AC, AC-N, AC-N-Mo and AC-Mo were characterized by N2- physisorption, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Spectroscopy/Energy Dispersive Spectroscopy (SEM/EDS), Raman Spectroscopy (RS), Fourier Transform Infrared Spectroscopy (FTIR) and Ammonia-Temperature-Programmed Desorption (NH3-TPD).


2018 ◽  
Vol 4 (3) ◽  
pp. 48 ◽  
Author(s):  
Sebastiano Campisi ◽  
Sofia Capelli ◽  
Davide Motta ◽  
Felipe Trujillo ◽  
Thomas Davies ◽  
...  

Herein, we reported the utilization of pre-formed Au–Pt nanoparticles deposited on phosphorus functionalized carbons as effective catalysts for the oxidation of 5-hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA). Au–Pt nanoparticles have been prepared by a two-step methodology using polyvinyl alcohol (PVA) as protective agent and a combination of NaBH4 and H2 as reducing agents. Three carbon nanofibers (CNFs) with different graphitization degrees have been functionalized through treatment with an H3PO4–HNO3 mixture at 150 °C, in order to incorporate P groups on carbon surface. Surface and structural properties of the synthesized functionalized materials have been investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The structural and surface properties of carbon nanofibers determine the amount of P-functionalities, which is a key parameter affecting the catalytic performances of Au–Pt. Indeed, the highest activity and stability has been achieved for Au–Pt deposited on the sample, which showed the largest amount of P-groups on the surface.


2016 ◽  
Vol 1 (12) ◽  
pp. 3189-3196 ◽  
Author(s):  
Hideo Inoue ◽  
Takafumi Ishii ◽  
Naokatsu Kannari ◽  
Jun-ichi Ozaki

Sign in / Sign up

Export Citation Format

Share Document