scholarly journals Flexible, Biocompatible PET Sheets: A Platform for Attachment, Proliferation and Differentiation of Eukaryotic Cells

Surfaces ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 306-322
Author(s):  
Soumen Samanta ◽  
Diana Gaad ◽  
Eva Cabet ◽  
Alain Lilienbaum ◽  
Ajay Singh ◽  
...  

Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated diazonium cation precursor. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedure. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers.

Author(s):  
Soumen Samanta ◽  
Diana Gaad ◽  
Eva Cabet ◽  
Alain Lilienbaum ◽  
Ajay Singh ◽  
...  

Transparent, flexible, biaxially oriented polyethylene terephthalate (PET) sheets were modified by bioactive polymer-fibronectin top layers for the attachment of cells and growth of muscle fibers. Towards this end, PET sheets were grafted with 4-(dimethylamino)phenyl (DMA) groups from the in situ generated corresponding diazonium compound. The arylated sheets served as macro-hydrogen donors for benzophenone and the growth of poly(2-hydroxy ethyl methacrylate) (PHEMA) top layer by surface-confined free radical photopolymerization. The PET-PHEMA sheets were further grafted with fibronectin (FBN) through the 1,1-carbonyldiimidazole coupling procedures. The bioactive PET-PHEMA-I-FBN was then employed as a platform for the attachment, proliferation and differentiation of eukaryotic cells which after a few days gave remarkable muscle fibers, of ~120 µm length and ~45 µm thickness. We demonstrate that PET-PHEMA yields a fast growth of cells followed by muscle fibers of excellent levels of differentiation compared to pristine PET or standard microscope glass slides. The positive effect is exacerbated by crosslinking PHEMA chains with ethylene glycol dimethacrylate at initial HEMA/EGDMA concentration ratio = 9/1. This works conclusively shows that in situ generated diazonium salts provide aryl layers for the efficient UV-induced grafting of biocompatible coating that beneficially serve as platform for cell attachment and growth of muscle fibers. Beyond this work, diazonium coupling agents constitute the corner stone of next generation processes for building flexible platforms for cell adhesion and uses thereof.


Author(s):  
Robyn Rufner ◽  
Gerhard W. Hacker ◽  
Michele Forte ◽  
Nancyleigh E. Carson ◽  
Cristina Xenachis ◽  
...  

The use of immunogold-silver staining (IGSS) to enhance label penetration and Localization for immunocytochemistry or in situ hybridization utilizing a variety of metallic salts has been documented. In this morphological study, the effects of silver acetate, silver lactate and silver nitrate were evaluated for immunogold-labeling of a trial natriuretic peptides (ANP) in rat right atria.Eight Wistar Kyoto retired breeders were sedated with pentobarbital, perfused with either 4% paraformaldehyde (LM) or Karnovsky's fixative (EM), and right atria were dissected, processed, embedded in paraffin or epon, respectively and sectioned according to conventional methods. For light microscopy, an indirect IGSS method according to Hacker (3) was performed. Paraffin sections on glass slides were washed in ddH2O, immersed in Lugol's iodine, washed in ddH2O and treated with 2.5% aqueous sodium thiosulfate for 20 sec. After additional washes in ddH2O and TBS-0.1% fish gelatin, 10% normal goat serum (PBS with 1% BSA) was applied for 20 min before an overnight incubation at 4°C with a polyclonal α-ANP primary antibody (Peninsula Labs, 1:1000 in TBS/BSA).


2021 ◽  
pp. 088391152199784
Author(s):  
Nipun Jain ◽  
Shashi Singh

Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.


2021 ◽  
Vol 02 ◽  
Author(s):  
Larissa Bach-Toledo ◽  
Patricio G. Peralta-Zamora ◽  
Liziê Daniela Tentler Prola

Background: The demand for photocatalytic processes assisted by solar radiation has stimulated the upgrading of established systems, as the semiconductor modification with noble metals. Objective: the synthesis, characterization, and photocatalytic activity evaluation of the Ag-TiO2, against sulfamethoxazole molecule, and investigate the significance of the plasmonic phenomenon in Visible (450 - 1000nm) and UV-Vis (315-800 nm) radiation. Methods: Different nanocomposites Ag/TiO2 ratios were synthesized by the deposition of Ag nanoparticles on the TiO2 surface by in-situ photoreduction, and then calcinated at 400°C for 2 hr. The chemical-physical properties of the materials were examined by UV-Vis Diffuse Reflectance (UV-Vis DRS) Scanning Electronic Microscopy (SEM), Transmission Electronic Microscopy (TEM), X-Ray Energy Dispersive Spectroscopy (EDS). The experiments were conducted in a cooled photochemical reactor irradiated by halogen lamp (250W). The degradation of Sulfamethoxazole was monitored by HPLC-DAD. Results: Although the prepared photocatalysts show an intense plasmonic band centered at 500 nm, no photocatalytic activity was observed in the process assisted by artificial visible radiation ( ≥ 450 nm). In processes assisted by artificial UV-Vis radiation, the photolysis rate of the model compound (sulfamethoxazole) was higher than the photocatalytic rate, and in the absence of UV radiation, all the reactions were inhibited. The positive effect of the presence of silver nanoparticles onto the TiO2 surface was only evidenced in studies involving solar radiation. Conclusion: The results suggest the need for a balance between UV and Vis radiation to activate the nanocomposite and perform the sulfamethoxazole degradation.


1998 ◽  
Vol 111 (2) ◽  
pp. 171-181 ◽  
Author(s):  
L. Lafanechere ◽  
C. Courtay-Cahen ◽  
T. Kawakami ◽  
M. Jacrot ◽  
M. Rudiger ◽  
...  

The C terminus of the tubulin alpha-subunit of most eukaryotic cells undergoes a cycle of tyrosination and detyrosination using two specific enzymes, a tubulin tyrosine ligase (TTL) and a tubulin carboxypeptidase. Although this enzyme cycle is conserved in evolution and exhibits rapid turnover, the meaning of this modification has remained elusive. We have isolated several NIH-3T3 derived clonal cell lines that lack TTL (TTL-). TTL- cells contain a unique tubulin isotype (delta2-tubulin) that can be detected with specific antibodies. When injected into nude mice, both TTL- cells and TTL- cells stably transfected with TTL cDNA form sarcomas. But in tumors formed from TTL rescued cells, TTL is systematically lost during tumor growth. A strong selection process has thus acted during tumor growth to suppress TTL activity. In accord with this result, we find suppression of TTL activity in the majority of human tumors assayed with delta2-tubulin antibody. We conclude there is a widespread loss of TTL activity during tumor growth in situ, suggesting that TTL activity may play a role in tumor cell regulation.


Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 813-820
Author(s):  
L.L. Harris ◽  
J.C. Talian ◽  
P.S. Zelenka

The present study uses the polymerase chain reaction and in situ hybridization to examine c-myc and N-myc mRNA in the embryonic chicken lens at 6, 10, 14 and 19 days of development and compares the pattern of expression obtained with the developmental pattern of cell proliferation and differentiation. In the central epithelium, c-myc mRNA levels were proportional to the percentage of proliferating cells throughout development. N-myc mRNA expression in this region was relatively low and showed no correlation with cell proliferation. The ratio of N-myc to c-myc mRNA increased markedly with the onset of epithelial cell elongation and terminal fiber cell differentiation, although both c-myc and N-myc mRNAs continued to be expressed in postmitotic, elongating cells of the equatorial epithelium and in terminally differentiating lens fiber cells. Thus, increased expression of N-myc, a gene whose protein product may compete with c-myc protein for dimerization partners, accompanies the dissociation of c-myc expression and cell proliferation during terminal differentiation of lens fiber cells.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 272 ◽  
Author(s):  
Patricia Diaz-Rodriguez ◽  
Mirian Sánchez ◽  
Mariana Landin

The mimesis of biological systems has been demonstrated to be an adequate approach to obtain tissue engineering scaffolds able to promote cell attachment, proliferation, and differentiation abilities similar to those of autologous tissues. Bioceramics are commonly used for this purpose due to their similarities to the mineral component of hard tissues as bone. Furthermore, biomimetic scaffolds are frequently loaded with diverse therapeutic molecules to enhance their biological performance, leading to final products with advanced functionalities. In this review, we aim to describe the already developed bioceramic-based biomimetic systems for drug loading and local controlled release. We will discuss the mechanisms used for the inclusion of therapeutic molecules on the designed systems, paying special attention to the identification of critical parameters that modulate drug loading and release kinetics on these scaffolds.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


2009 ◽  
Vol 96 (3) ◽  
pp. 127a
Author(s):  
M.L. Bang ◽  
M. Caremani ◽  
E. Brunello ◽  
R. Littlefield ◽  
R. Lieber ◽  
...  

1994 ◽  
Vol 266 (3) ◽  
pp. H1202-H1213 ◽  
Author(s):  
P. P. De Tombe ◽  
W. C. Little

Recent studies in isolated and in vivo canine hearts have suggested that the left ventricular end-systolic pressure (LVPes) of ejecting beats is the net result of a balance between positive and negative effects of ejection. At present, it is unknown whether these ejection effects are merely a ventricular chamber property or represent a fundamental myocardial property. Accordingly, we examined the effects of ejection in eight isolated rat cardiac trabeculae at the sarcomere level. We approximated in situ sarcomere shortening patterns using an iterative computer loading system. Six isovolumic contractions were compared with four ejecting contractions. The superfusing solution contained either 0.7 mM Ca2+ or 0.65 mM Sr2+ plus 0.15 mM Ca2+. With Ca2+, simulated LVPes ("LVP"es) of ejecting contractions was significantly lower than isovolumic "LVP"es (-5.3 +/- 5.6%), whereas with Sr2+, ejecting "LVP"es was significantly higher than isovolumic "LVP"es (+4.5 +/- 7.5%). Contraction duration and time to end systole were markedly prolonged in ejecting vs. isovolumic contractions with either Ca2+ or Sr2+. As a consequence, comparison of simulated LVP between ejecting and isovolumic beats throughout the contraction, i.e., at the same simulated LVV and time, revealed only a positive effect of ejection with either Ca2+ (+18.8 +/- 5.5%) or Sr2+ (+23.4 +/-9.3%). We conclude that both positive and negative effects of ejection are basic myocardial properties.


Sign in / Sign up

Export Citation Format

Share Document