scholarly journals Design and Application of Fuzzy Logic Based Fire Monitoring and Warning Systems for Smart Buildings

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 615 ◽  
Author(s):  
Barera Sarwar ◽  
Imran Bajwa ◽  
Shabana Ramzan ◽  
Bushra Ramzan ◽  
Mubeen Kausar

Typical fire monitoring and warning systems use a single smoke detector that is connected to a fire management system to give early warnings before the fire spreads out up to a damaging level. However, it is found that only smoke detector-based fire monitoring systems are not efficient and intelligent since they generate false warnings in case of a person is smoking, etc. There is need of a multi-sensor based intelligent and smart fire monitoring system that employs various parameters, such as presence of flame, temperature of the room, smoke, etc. To achieve such a smart solution, a multi-sensor solution is required that can intelligently use the data of sensors and generate true warnings for further fire control and management. This paper presents an intelligent Fire Monitoring and Warning System (FMWS) that is based on Fuzzy Logic to identify the true existence of dangerous fire and send alert to Fire Management System (FMS). This paper discusses design and application of a Fuzzy Logic Fire Monitoring and Warning System that also sends an alert message using Global System for Mobile Communication (GSM) technology. The system is based on tiny, low cost, and very small in size sensors to ensure that the solution is reproduceable. Simulation work is done in MATLAB ver. 7.1 (The MathWorks, Natick, MA, USA) and the results of the experiments are satisfactory.

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3118
Author(s):  
Hanjie Yang ◽  
Zhaoting Chen ◽  
Yingxin Ye ◽  
Gang Chen ◽  
Fantang Zeng ◽  
...  

Algal blooms are one of the most serious threats to water resources, and their early detection remains a challenge in eutrophication management worldwide. In recent years, with more widely available real-time auto-monitoring data and the advancement of computational capabilities, fuzzy logic has become a robust tool to establish early warning systems. In this study, a framework for an early warning system was constructed, aiming to accurately predict algae blooms in a river containing several water conservation areas and in which the operation of two tidal sluices has altered the tidal currents. Statistical analysis of sampled data was first conducted and suggested the utilization of dissolved oxygen, velocity, ammonia nitrogen, total phosphorus, and water temperature as inputs into the fuzzy logic model. The fuzzy logic model, which was driven by biochemical data sampled by two auto-monitoring sites and numerically simulated velocity, successfully reproduced algae bloom events over the past several years (i.e., 2011, 2012, 2013, 2017, and 2019). Considering the demands of management, several key parameters, such as onset threshold and prolongation time and subsequent threshold, were additionally applied in the warning system, which achieved a critical success index and positive hit rate values of 0.5 and 0.9, respectively. The differences in the early warning index between the two auto-monitoring sites were further illustrated in terms of tidal influence, sluice operation, and the influence of the contaminated water mass that returned from downstream during flood tides. It is highlighted that for typical tidal rivers in urban areas of South China with sufficient nutrient supply and warm temperature, dissolved oxygen and velocity are key factors for driving early warning systems. The study also suggests that some additional common pollutants should be sampled and utilized for further analysis of water mass extents and data quality control of auto-monitoring sampling.


Author(s):  
Song-Do Ki Et.al

Background/Objectives: Safety matters are being discussed and countermeasures to prevent various breakdowns/accidents are urgently required. Therefore, we propose a safety management solution for ESS fire monitoring. Methods/Statistical analysis: BLE 5.0-based ultra-compact wireless sensor-based edge that can detect off-gas early, as well as measure the temperature, humidity, vibration, and smoke in the golden time of approximately 10 minutes from the occurrence of thermal runaway inside the ESS to a fire. This paper proposes a safety system and an ESS-integrated safety management solution. Findings: It is known that the ESS currently in operation is installed without an integrated control method and a systematic protection system between facilities in order to connect new and renewable energy and to quickly supply the site, so there are many problems. For this reason, various accidents such as reactor failure and fire are occurring in the ESS installed at the actual site. Recently, 22 fires occurred in ESS facilities installed nationwide in 2019, and the government has urgently stopped ESS operation and formed a joint public-private investigation committee to clarify the cause. Among the various causes of ESS fires that have been raised, the ESS design should be considered. This paper reported an edge safety-based on BLE 5.0 that is capable of detecting off-gas and detecting temperature, humidity, vibration, and smoke early in the golden time of approximately 10 minutes from the occurrence of thermal runaway inside the ESS to a fire. A system and ESS integrated safety management solution were proposed. In this study, internal monitoring of an ESS was possible by integrating directly with existing and new ESS. The administrator can observe all conditions on the web through the cloud-based ESS integrated safety management system. Improvements/Applications: This paper analyzed and developed a cloud-based ESS integrated safety management system. It will be helpful in ESS fire management in the future and will be useful in designing artificial intelligence-based safety management solutions.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1737
Author(s):  
Ane Dalsnes Storsæter ◽  
Kelly Pitera ◽  
Edward McCormack

Pavement markings are used to convey positioning information to both humans and automated driving systems. As automated driving is increasingly being adopted to support safety, it is important to understand how successfully sensor systems can interpret these markings. In this effort, an in-vehicle lane departure warning system was compared to data collected simultaneously from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving on three different routes in variable lighting conditions and road classes found that, depending on conditions, the retroreflectometer could predict whether the car’s lane departure systems would detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can be used to monitor the state of pavement markings and can provide input on how to design and maintain road infrastructure to support automated driving features. Since data about the condition of lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input into the pavement marking management systems operated by many road owners, these findings also indicate that these automated driving sensors have an important role in enhancing the maintenance of pavement markings.


2021 ◽  
Vol 11 (16) ◽  
pp. 7197
Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Shan Bao

Warning pedestrians of oncoming vehicles is critical to improving pedestrian safety. Due to the limitations of a pedestrian’s carrying capacity, it is crucial to find an effective solution to provide warnings to pedestrians in real-time. Limited numbers of studies focused on warning pedestrians of oncoming vehicles. Few studies focused on developing visual warning systems for pedestrians through wearable devices. In this study, various real-time projection algorithms were developed to provide accurate warning information in a timely way. A pilot study was completed to test the algorithm and the user interface design. The projection algorithms can update the warning information and correctly fit it into an easy-to-understand interface. By using this system, timely warning information can be sent to those pedestrians who have lower situational awareness or obstructed view to protect them from potential collisions. It can work well when the sightline is blocked by obstructions.


Author(s):  
J. Selva ◽  
A. Amato ◽  
A. Armigliato ◽  
R. Basili ◽  
F. Bernardi ◽  
...  

AbstractDestructive tsunamis are most often generated by large earthquakes occurring at subduction interfaces, but also other “atypical” sources—defined as crustal earthquakes and non-seismic sources altogether—may cause significant tsunami threats. Tsunamis may indeed be generated by different sources, such as earthquakes, submarine or coastal landslides, volcano-related phenomena, and atmospheric perturbations. The consideration of atypical sources is important worldwide, but it is especially prominent in complex tectonic settings such as the Mediterranean, the Caribbean, or the Indonesian archipelago. The recent disasters in Indonesia in 2018, caused by the Palu-Sulawesi magnitude Mw 7.5 crustal earthquake and by the collapse of the Anak-Krakatau volcano, recall the importance of such sources. Dealing with atypical sources represents a scientific, technical, and computational challenge, which depends on the capability of quantifying and managing uncertainty efficiently and of reducing it with accurate physical modelling. Here, we first introduce the general framework in which tsunami threats are treated, and then we review the current status and the expected future development of tsunami hazard quantifications and of the tsunami warning systems in Italy, with a specific focus on the treatment of atypical sources. In Italy, where the memory of historical atypical events like the 1908 Messina earthquake or the relatively recent 2002 Stromboli tsunami is still vivid, specific attention has been indeed dedicated to the progressive development of innovative strategies to deal with such atypical sources. More specifically, we review the (national) hazard analyses and their application for coastal planning, as well as the two operating tsunami warning systems: the national warning system for seismically generated tsunamis (SiAM), whose upstream component—the CAT-INGV—is also a Tsunami Service Provider of the North-eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) coordinated by the Intergovernmental Coordination Group established by the Intergovernmental Oceanographic Commission (IOC) of UNESCO, and the local warning system for tsunamis generated by volcanic slides along the Sciara del Fuoco of Stromboli volcano. Finally, we review the state of knowledge about other potential tsunami sources that may generate significant tsunamis for the Italian coasts, but that are not presently considered in existing tsunami warning systems. This may be considered the first step towards their inclusion in the national tsunami hazard and warning programs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mahamat Abdelkerim Issa ◽  
Fateh Chebana ◽  
Pierre Masselot ◽  
Céline Campagna ◽  
Éric Lavigne ◽  
...  

Abstract Background Many countries have developed heat-health watch and warning systems (HHWWS) or early-warning systems to mitigate the health consequences of extreme heat events. HHWWS usually focuses on the four hottest months of the year and imposes the same threshold over these months. However, according to climate projections, the warm season is expected to extend and/or shift. Some studies demonstrated that health impacts of heat waves are more severe when the human body is not acclimatized to the heat. In order to adapt those systems to potential heat waves occurring outside the hottest months of the season, this study proposes specific health-based monthly heat indicators and thresholds over an extended season from April to October in the northern hemisphere. Methods The proposed approach, an adoption and extension of the HHWWS methodology currently implemented in Quebec (Canada). The latter is developed and applied to the Greater Montreal area (current population 4.3 million) based on historical health and meteorological data over the years. This approach consists of determining excess mortality episodes and then choosing monthly indicators and thresholds that may involve excess mortality. Results We obtain thresholds for the maximum and minimum temperature couple (in °C) that range from (respectively, 23 and 12) in April, to (32 and 21) in July and back to (25 and 13) in October. The resulting HHWWS is flexible, with health-related thresholds taking into account the seasonality and the monthly variability of temperatures over an extended summer season. Conclusions This adaptive and more realistic system has the potential to prevent, by data-driven health alerts, heat-related mortality outside the typical July–August months of heat waves. The proposed methodology is general and can be applied to other regions and situations based on their characteristics.


2015 ◽  
Vol 793 ◽  
pp. 578-584
Author(s):  
M.S. Jamri ◽  
Zul Hasrizal Bohari ◽  
M.F. Baharom ◽  
M.H. Jali ◽  
M.N.M. Nasir ◽  
...  

This paper discussed on design and development of fire warning system using automated remote messaging method. This device enables to alert the owner whenever fire occur that need rapid attention towards the building. This is maybe due to carelessness of user or gas leakage. Fire warning system is an existing project but it will be enhanced. This project discussed the design and implementation of a fire alarm system using the microcontroller which controlled the entire system. This system comprised of smoke detector that linked to PIC and GSM Modem. When smoke detected, the fire alarm will triggered and send a signal to the PIC. The PIC will process the data and transmit the signal to the GSM modem. The GSM modem will send message to alert the building owner. The owner can make further action by informing the nearest fire department. This module is applied for transferring of GSM SMS message to the owner mobile number. The devices can be the early and fast prevention system for building owner.


2013 ◽  
Vol 13 (1) ◽  
pp. 85-90 ◽  
Author(s):  
E. Intrieri ◽  
G. Gigli ◽  
N. Casagli ◽  
F. Nadim

Abstract. We define landslide Early Warning Systems and present practical guidelines to assist end-users with limited experience in the design of landslide Early Warning Systems (EWSs). In particular, two flow chart-based tools coming from the results of the SafeLand project (7th Framework Program) have been created to make them as simple and general as possible and in compliance with a variety of landslide types and settings at single slope scale. We point out that it is not possible to cover all the real landslide early warning situations that might occur, therefore it will be necessary for end-users to adapt the procedure to local peculiarities of the locations where the landslide EWS will be operated.


Author(s):  
E.N Bernard ◽  
H.O Mofjeld ◽  
V Titov ◽  
C.E Synolakis ◽  
F.I González

Tsunamis are an ever-present threat to lives and property along the coasts of most of the world's oceans. As the Sumatra tsunami of 26 December 2004 reminded the world, we must be more proactive in developing ways to reduce their impact on our global society. This article provides an overview of the state of knowledge of tsunamis, presents some challenges confronting advances in the field and identifies some promising frontiers leading to a global warning system. This overview is then used to develop guidelines for advancing the science of forecasting, hazard mitigation programmes and the development of public policy to realize a global system. Much of the information on mitigation and forecasting draws upon the development and accomplishments of a joint state/federal partnership that was forged to reduce tsunami hazards along US coastlines—the National Tsunami Hazard Mitigation Programme. By integrating hazard assessment, warning guidance and mitigation activities, the programme has created a roadmap and a set of tools to make communities more resilient to local and distant tsunamis. Among the tools are forecasting, educational programmes, early warning systems and design guidance for tsunami-resilient communities. Information on international cooperation is drawn from the Global Earth Observing System of Systems (GEOSS). GEOSS provides an international framework to assure international compatibility and interoperability for rapid exchange of data and information.


Sign in / Sign up

Export Citation Format

Share Document