scholarly journals The Effect of Nanoparticle Shape and Microchannel Geometry on Fluid Flow and Heat Transfer in a Porous Microchannel

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 591 ◽  
Author(s):  
Zahra Abdelmalek ◽  
Annunziata D’Orazio ◽  
Arash Karimipour

Microchannels are widely used in electrical and medical industries to improve the heat transfer of the cooling devices. In this paper, the fluid flow and heat transfer of water–Al2O3 nanofluids (NF) were numerically investigated considering the nanoparticle shape and different cross-sections of a porous microchannel. Spherical, cubic, and cylindrical shapes of the nanoparticle as well as circular, square, and triangular cross-sections of the microchannel were considered in the simulation. The finite volume method and the SIMPLE algorithm have been employed to solve the conservation equations numerically, and the k-ε turbulence model has been used to simulate the turbulence fluid flow. The models were simulated at Reynolds number ranging from 3000 to 9000, the nanoparticle volume fraction ranging from 1 to 3, and a porosity coefficient of 0.7. The results indicate that the average Nusselt number (Nuave) increases and the friction coefficient decreases with an increment in the Re for all cases. In addition, the rate of heat transfer in microchannels with triangular and circular cross-sections is reduced with growing Re values and concentration. The spherical nanoparticle leads to maximum heat transfer in the circular and triangular cross-sections. The heat transfer growth for these two cases are about 102.5% and 162.7%, respectively, which were obtained at a Reynolds number and concentration of 9000 and 3%, respectively. However, in the square cross-section, the maximum heat transfer increment was obtained using cylindrical nanoparticles, and it is equal to 80.2%.

2014 ◽  
Vol 18 (4) ◽  
pp. 1305-1314 ◽  
Author(s):  
Mohammad Valipour ◽  
Reza Masoodi ◽  
Saman Rashidi ◽  
Masoud Bovand ◽  
Mojtaba Mirhosseini

In this paper, a numerical simulation has been performed to study the fluid flow and heat transfer around a square cylinder utilizing Al2O3-H2O nanofluid over low Reynolds numbers. Here, both Reynolds and Peclet numbers are varied within the range of 1 to 40and the volume fraction of nanoparticles (?) is varied within the range of 0<?<0.05. Two-dimensional and steady mass continuity, momentum and energy equations have been discretized using Finite Volume Method (FVM). SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of volume fraction of nanoparticles on fluid flow and heat transfer were investigated numerically. It was found that at a given Reynolds number, the Nusselt number, drag coefficient, recirculation length, and pressure coefficient increases by increasing the volume fraction of nanoparticles.


Author(s):  
Manash Protim Boruah ◽  
Pitambar R. Randive ◽  
Sukumar Pati

Purpose The purpose of this study is to numerically analyze the thermal and entropy generation characteristics on two-dimensional, incompressible, laminar single-phase flow of Al2O3-water nanofluid in a micro-channel subjected to asymmetric sinusoidal wall heating with varying amplitude, length of fluctuation period and phase difference of applied heat flux for Reynolds number in the range of 25-1000. Design/methodology/approach The numerical computation is based on the Finite Element Method and the Lagrange finite element technique is used for approximating the flow variables within the computational domain. Findings The average Nusselt number increases with increasing Reynolds number (Re) for all the volume fractions of nanofluid. However, the total entropy generation decreases up to a critical value of Re and increases thereafter. Increase in volume fraction shifts the critical Re towards the lower Re regime. The average Nusselt number and total entropy generation increase with amplitude and length of fluctuation period of heat flux. The optimal choice of volume fraction for lesser entropy generation and higher heat transfer is found to be 3 per cent independent of the value of amplitude, length of fluctuation period and phase difference of the heat flux. Originality/value To the best of authors’ knowledge, the interplay of various parameters concerning non-uniform heating in achieving the maximum heat transfer with minimum irreversibility has not been investigated. Focusing on this agenda, the results of this study would benefit the industrial sector in achieving the maximum heat transfer at the cost of minimum irreversibilities with an optimal choice of inlet Reynolds number, volume fraction of nanofluid, amplitude, length of the period of fluctuation of heat flux and phase difference of applied heat flux.


2016 ◽  
Vol 37 (3) ◽  
pp. 45-62 ◽  
Author(s):  
Tomasz Muszyński ◽  
Sławomir Marcin Kozieł

Abstract Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Numerical assessments in the square channel heat exchanger installed with various parameters of V-orifices are presented. The V-orifice is installed in the heat exchanger channel with gap spacing between the upper-lower edges of the orifice and the channel wall. The purposes of the design are to reduce the pressure loss, increase the vortex strength, and increase the turbulent mixing of the flow. The influence of the blockage ratio and V-orifice arrangement is investigated. The blockage ratio, b/H, of the V-orifice is varied in the range 0.05–0.30. The V-tip of the V-orifice pointing downstream (V-downstream) is compared with the V-tip pointing upstream (V-upstream) by both flow and heat transfer. The numerical results are reported in terms of flow visualization and heat transfer pattern in the test section. The thermal performance assessments in terms of Nusselt number, friction factor, and thermal enhancement factor are also concluded. The numerical results reveal that the maximum heat transfer enhancement is found to be around 26.13 times higher than the smooth channel, while the optimum TEF is around 3.2. The suggested gap spacing for the present configuration of the V-orifice channel is around 5–10%.


Author(s):  
Sunil Patil ◽  
Teddy Sedalor ◽  
Danesh Tafti ◽  
Srinath Ekkad ◽  
Yong Kim ◽  
...  

Modern dry low emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the gas side difficult to predict and estimate. A coupled experimental–numerical study of swirling flow inside a DLE annular combustor model is used to determine the distribution of heat transfer on the liner walls. Three different Reynolds numbers are investigated in the range of 210,000–840,000 with a characteristic swirl number of 0.98. The maximum heat transfer coefficient enhancement ratio decreased from 6 to 3.6 as the flow Reynolds number increased from 210,000 to 840,000. This is attributed to a reduction in the normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.98 for the Reynolds number range investigated. The location of peak heat transfer did not change with the increase in Reynolds number since the flow structures in the combustors did not change with Reynolds number. Results also showed that the heat transfer distributions in the annulus have slightly different characteristics for the concave and convex walls. A modified swirl number accounting for the step expansion ratio is defined to facilitate comparison between the heat transfer characteristics in the annular combustor with previous work in a can combustor. A higher modified swirl number in the annular combustor resulted in higher heat transfer augmentation and a slower decay with Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document