scholarly journals Impact of Acid-Base Status on Mortality in Patients with Acute Pesticide Poisoning

Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 22
Author(s):  
Hyo-Wook Gil ◽  
Min Hong ◽  
HwaMin Lee ◽  
Nam-jun Cho ◽  
Eun-Young Lee ◽  
...  

We investigated clinical impacts of various acid-base approaches (physiologic, base excess (BE)-based, and physicochemical) on mortality in patients with acute pesticide intoxication and mutual intercorrelated effects using principal component analysis (PCA). This retrospective study included patients admitted from January 2015 to December 2019 because of pesticide intoxication. We compared parameters assessing the acid-base status between two groups, survivors and non-survivors. Associations between parameters and 30-days mortality were investigated. A total of 797 patients were analyzed. In non-survivors, pH, bicarbonate concentration (HCO3−), total concentration of carbon dioxide (tCO2), BE, and effective strong ion difference (SIDe) were lower and apparent strong ion difference (SIDa), strong ion gap (SIG), total concentration of weak acids, and corrected anion gap (corAG) were higher than in survivors. In the multivariable logistic analysis, BE, corAG, SIDa, and SIDe were associated with mortality. PCA identified four principal components related to mortality. SIDe, HCO3−, tCO2, BE, SIG, and corAG were loaded to principal component 1 (PC1), referred as total buffer bases to receive and handle generated acids. PC1 was an important factor in predicting mortality irrespective of the pesticide category. PC3, loaded mainly with pCO2, suggested respiratory components of the acid-base system. PC3 was associated with 30-days mortality, especially in organophosphate or carbamate poisoning. Our study showed that acid-base abnormalities were associated with mortality in patients with acute pesticide poisoning. We reduced these variables into four PCs, resembling the physicochemical approach, revealed that PCs representing total buffer bases and respiratory components played an important role in acute pesticide poisoning.

1998 ◽  
Vol 84 (5) ◽  
pp. 1740-1748 ◽  
Author(s):  
Peter Wilkes

The present study was a prospective, nonrandomized, observational examination of the relationship among hypoproteinemia and electrolyte and acid-base status in a critical care population of patients. A total of 219 arterial blood samples reviewed from 91 patients was analyzed for arterial blood gas, electrolytes, lactate, and total protein. Plasma strong-ion difference ([SID]) was calculated from [Na+] + [K+] − [Cl−] − [La−]. Total protein concentration was used to derive the total concentration of weak acid ([A]tot). [A]tot encompassed a range of 18.7 to 9.0 meq/l, whereas [SID] varied from 48.1 to 26.6 meq/l and was directly correlated with [A]tot. The decline in [SID] was primarily attributable to an increase in [Cl−]. A direct correlation was also noted between[Formula: see text] and [SID], but not between [Formula: see text] and [A]tot. The decrease in [SID] and [Formula: see text] was such that neither [H+] nor [[Formula: see text]] changed significantly with [A]tot.


2001 ◽  
Vol 91 (3) ◽  
pp. 1364-1371 ◽  
Author(s):  
Peter D. Constable

The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma nonvolatile buffers ( K a), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate Atot and K a values using data obtained from in vitro strong ion titration and CO2tonometry. The calculated values for Atot (24.1 mmol/l) and K a (1.05 × 10−7) were significantly ( P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (Atot = 19.0 meq/l and K a = 3.0 × 10−7). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), Pco 2, and Atot] of the strong ion approach were calculated as follows: [Formula: see text] [Formula: see text], [Formula: see text]where S is solubility of CO2 in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID+, Pco 2, and Atot on plasma pH. The calculated values for Atot and K a should facilitate application of the strong ion approach to acid-base disturbances in humans.


2019 ◽  
Vol 62 (2) ◽  
pp. 455-463 ◽  
Author(s):  
Zvonko Antunović ◽  
Ivica Marić ◽  
Željka Klir ◽  
Vatroslav Šerić ◽  
Boro Mioč ◽  
...  

Abstract. The aim of the present research was to determine the haemato-biochemical profile and blood acid–base status of Croatian spotted goats in a traditional Mediterranean production system. The 60 non-gravid female Croatian spotted goats of different ages were included in the research. They were divided into four groups of 15 goats according to age: group I – ≤1 year old; group II – 2–3 years; group III – 3–6 years; and group IV – 7–10 years. Haematological parameters were determined in whole blood, biochemical parameters in serum and acid–base status in plasma by automatic analyser. Total leukocyte number (WBC), haemoglobin (HGB) and mean corpuscular volume (MCV) in the blood were the highest, while mean haemoglobin concentration in erythrocytes (MCHCs) was the lowest in yearlings compared to other groups. Concentrations of urea, Mg, Cl, non-esterified fatty acids (NEFAs) and lactate were the highest in yearlings. Concentrations of Ca, Na, total cholesterol, high-density lipoprotein (HDL), very low-density lipoprotein (VLDL) and beta hydroxybutyrate (BHB) as well as the activity of alanine aminotransferase (ALT) were higher in older goats compared to yearlings, while the opposite was determined for the activities of creatine kinase (CK) and alkaline phosphatase (ALP). Values of pH, the strong ion difference (SID), anion gap (AG) and z values as well as the content of HCO3 and total pressure of carbon dioxide (ctCO2) were higher in older goats compared to yearlings. The results obtained may help in monitoring the health and nutritional status and improve the management of Croatian spotted goats. Based on the results of the present study, the effect of age needs to be included in the model when preparing the reference values for the haemato-biochemical profile and acid–base status of goats.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250274
Author(s):  
Bulent Gucyetmez ◽  
Filiz Tuzuner ◽  
Hakan Korkut Atalan ◽  
Uğur Sezerman ◽  
Kaan Gucyetmez ◽  
...  

To practically determine the effect of chloride (Cl) on the acid-base status, four approaches are currently used: accepted ranges of serum Cl values; Cl corrections; the serum Cl/Na ratio; and the serum Na-Cl difference. However, these approaches are governed by different concepts. Our aim is to investigate which approach to the evaluation of the effect of Cl is the best. In this retrospective cohort study, 2529 critically ill patients who were admitted to the tertiary care unit between 2011 and 2018 were retrospectively evaluated. The effects of Cl on the acid-base status according to each evaluative approach were validated by the standard base excess (SBE) and apparent strong ion difference (SIDa). To clearly demonstrate only the effects of Cl on the acid-base status, a subgroup that included patients with normal lactate, albumin and SIG values was created. To compare approaches, kappa and a linear regression model for all patients and Bland-Altman test for a subgroup were used. In both the entire cohort and the subgroup, correlations among BECl, SIDa and SBE were stronger than those for other approaches (r = 0.94 r = 0.98 and r = 0.96 respectively). Only BECl had acceptable limits of agreement with SBE in the subgroup (bias: 0.5 mmol L-1) In the linear regression model, only BECl in all the Cl evaluation approaches was significantly related to the SBE. For the evaluation of the effect of chloride on the acid-base status, BECl is a better approach than accepted ranges of serum Cl values, Cl corrections and the Cl/Na ratio.


1984 ◽  
Vol 246 (4) ◽  
pp. R452-R459 ◽  
Author(s):  
J. N. Cameron

In the water-breathing fishes, rising temperatures are accompanied by progressive reduction in pH, reductions in bicarbonate concentration, and slight rises in CO2 partial pressure. The pH-temperature slope of both intra- and extracellular compartments varies considerably, from -0.009 to -0.033/degrees C, with a rather consistent pattern of red muscle greater than white muscle greater than heart. Three different approaches to acid-base analysis, the imidazole-alphastat model, the strong-ion difference analysis, and the delta-bicarbonate approach, were applied to a set of data from the fresh-water channel catfish (Ictalurus punctatus). A principal difficulty encountered in using all three approaches was that assumptions were required regarding the chemical behavior of the intracellular buffers, but the delta-bicarbonate approach has the practical advantage of emphasizing parameters that can be measured directly. Closed-system models are not generally applicable to fish, and the interest for future work lies in deciphering the significance of tissue-to-tissue variations in pH regulation and in elucidating the mechanisms of the strong-ion transfers.


2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Rita Jacobs ◽  
Patrick M. Honore ◽  
Marc Diltoer ◽  
Herbert D. Spapen

Abstract Background Citrate, the currently preferred anticoagulant for continuous veno-venous hemofiltration (CVVH), may influence acid-base equilibrium. Methods The effect of 2 different citrate solutions on acid-base status was assessed according to the Stewart-Figge approach in two consecutive cohorts of critically ill adult patients. The first group received Prismocitrate 10/2 (PC10/2; 10 mmol citrate/L). The next group was treated with Prismocitrate 18/0 (PC18; 18 mmol citrate/L). Both groups received bicarbonate-buffered fluids in post-dilution. Results At similar citrate flow, the metabolic acidosis present at baseline in both groups was significantly attenuated in PC18 patients but persisted in PC10/2 patients after 24 h of treatment (median pH 7,42 vs 7,28; p = 0.0001). Acidosis in the PC10/2 group was associated with a decreased strong ion difference and an increased strong ion gap (respectively 43 vs. 51 mmol/L and 17 vs. 12 mmol/L, PC10/2 vs. PC18; both p = 0.001). Chloride flow was higher in PC10/2 than in PC18 subjects (25.9 vs 14.3 mmol/L blood; p < 0.05). Conclusion Correction of acidosis was blunted in patients who received 10 mmol citrate/L as regional anticoagulation during CVVH. This could be explained by differences in chloride flow between the applied citrate solutions inducing hyperchloremic acidosis.


2005 ◽  
Vol 2 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Amanda Waller ◽  
Michael I Lindinger

AbstractThe present study used the physicochemical approach to characterize the changes in acid–base status that occur in Standardbred racehorses during recovery from high-intensity exercise. Jugular venous blood was sampled from nine Standardbreds in racing condition, at rest and for 2 h following a high-intensity training workout. Plasma [H+] increased from 39.1±1.0 neq l−1 at rest to 44.8±2.7 neq l−1 at 1 min of recovery. A decreased strong ion difference ([SID]) was the primary contributor to the increased [H+] immediately at the end of exercise, while increased plasma weak ion concentration ([Atot]) was a minor contributor to the acidosis. A decreased partial pressure of carbon dioxide (PCO2) at 1 min of recovery had a slight alkalinizing effect. The decreased [SID] at 1 min of recovery was a result of a 15.1±3.1 meq l−1 increase in [lactate−], as [Na+] and [K+] were also increased by 6.5±0.7 and 1.14±0.06 meq l−1, respectively, at 1 min of recovery. It is concluded that high-intensity exercise and recovery is associated with significant changes in acid–base balance, and that full recovery of many parameters that determine acid–base status requires 60–120 min.


2019 ◽  
Author(s):  
Jan Schnapauff ◽  
David Piros ◽  
Anna Rippe ◽  
Peter Bentzer ◽  
Naomi Clyne ◽  
...  

ABSTRACTBackground:Correction of acute metabolic acidosis using sodium bicarbonate is effective, but has been hypothesized to exacerbate intra-cellular acidosis causing cellular dysfunction. The effects of acidemia and bicarbonate therapy on the cellular components of the glomerular filtration barrier, crucial for the integrity of the renal filter, are as yet unknown. Controversy persists regarding the most appropriate method to assess acid-base status: the “Stewart approach” or the “Siggaard-Andersen approach” using the standard base excess (SBE).Methods:Here we performed physiological studies in anesthetized Sprague-Dawley rats during severe metabolic acidosis (HCl iv 6 mmol kg-1) and following bicarbonate (2.5 mmol kg-1) administration. We assessed glomerular permeability using sieving coefficients of polydisperse fluorescein isothiocyanate (FITC)-Ficoll 70/400. Acid-base status was evaluated using SBE, standard bicarbonate, total CO2, the Stewart-Fencl strong ion difference (ΔSID = Na – Cl – 38) and a theoretical model of plasma and erythrocyte strong ion difference.Results:Our data show that neither acidosis nor its correction with NaHCO3altered glomerular permeability. We identified ΔSID as a strong estimator of plasma base excess (as assessed using the Van Slyke equation).In silicomodeling indicates that changes in the strong ion difference in erythrocytes would explain their buffering effect by means of a shift of anions from the extracellular fluid.Conclusion:These data demonstrate a remarkable tolerance of the glomerular filter to severe acute acidosis and bicarbonate therapy. Our results also cast light on the buffer mechanism in erythrocytes and the ability of different acid-base parameters to evaluate the extent of an acid-base disorder.IMPORTANCE STATEMENTMetabolic acidosis is a frequent complication of acute kidney injury in critically ill patients and is associated with a high risk of mortality. Correction of acidosis using sodium bicarbonate is simple and effective, but could possibly induce intracellular acidosis causing cellular dysfunction. The effects of acidemia and subsequent bicarbonate treatment on the cellular components of the glomerular filtration barrier, crucial for the integrity of the renal filter, are unknown. We show that neither severe acidemia nor bicarbonate therapy appear to have negative effects on glomerular permeability. Our analysis also highlights the buffering effects of erythrocytes, which appear to be mediated by a shift of strong anions into the red cells, increasing the strong ion difference in the extracellular fluid.


2020 ◽  
Author(s):  
Bulent Gucyetmez ◽  
Filiz Tuzuner ◽  
Hakan Korkut Atalan ◽  
Ugur Sezerman ◽  
Kaan Gucyetmez ◽  
...  

Abstract Background: To determine the effect of chloride on the acid-base status, four approaches are currently used: 1) accepted ranges of serum chloride values; 2) chloride corrections, such as chloride deficiency/excess and chloride modification; 3) the Cl/Na ratio; and 4) the sodium- chloride difference, such as base-excess chloride. However, these approaches are governed by different concepts, and they can evaluate the effects of chloride on the acid-base status differently. Our aim is to investigate which approach to the evaluation of the effect of chloride is the best.Methods: In this retrospective cohort study, 2529 critically ill patients who were admitted to the tertiary care unit were evaluated between 2011 and 2018. Patient characteristics and blood gas parameters at the ICU admission and outcomes were recorded. The effects of chloride on the acid-base status according to each evaluative approach were validated by the standard base excess and apparent strong ion difference. To compare approaches, kappa and Bland-Altman tests and a linear regression model were used. Results: In the linear regression model for all patients, only base-excess chloride in all the chloride evaluation approaches was significantly related to the standard base excess. In the subgroup, the correlation and limits of agreement between base-excess chloride and the standard base excess were the strongest (r2=0.92 p<0.001 bias: 0.5mmol/L). Conclusions: For the evaluation of the effect of chloride on the acid-base status, base-excess chloride is a better approach than accepted ranges of serum chloride values, chloride corrections and the Cl/Na ratio.


2008 ◽  
Vol 36 (6) ◽  
pp. 822-829 ◽  
Author(s):  
T. J. Morgan ◽  
G Power ◽  
B. Venkatesh ◽  
M. A. Jones

Fluid-induced metabolic acidosis can be harmful and can complicate cardiopulmonary bypass. In an attempt to prevent this disturbance, we designed a bicarbonate-based crystalloid circuit prime balanced on physico-chemical principles with a strong ion difference of 24 mEq/l and compared its acid-base effects with those of Plasma-Lyte 148, a multiple electrolyte replacement solution containing acetate plus gluconate totalling 50 mEq/l. Twenty patients with normal acid-base status undergoing elective cardiac surgery were randomised 1:1 to a 2 litre prime of either bicarbonate-balanced fluid or Plasma-Lyte 148. With the trial fluid, metabolic acid-base status was normal following bypass initiation (standard base excess 0.1 (1.3) mEq/l, mean, SD), whereas Plasma-Lyte 148 produced a slight metabolic acidosis (standard base excess -2.2 (2.1) mEq/l). Estimated group difference after baseline adjustment was 3.6 mEq/l (95% confidence interval 2.1 to 5.1 mEq/l, P=0.0001). By late bypass, mean standard base excess in both groups was normal (0.8 (2.2) mEq/l vs. -0.8 (1.3) mEq/l, P=0.5). Strong ion gap values were unaltered with the trial fluid, but with Plasma-Lyte 148 increased significantly on bypass initiation (15.2 (2.5) mEq/l vs. 2.5 (1.5) mEq/l, P <0.0001), remaining elevated in late bypass (8.4 (3.4) mEq/l vs. 5.8 (2.4) mEq/l, P <0.05). We conclude that a bicarbonate-based crystalloid with a strong ion difference of 24 mEq/l is balanced for cardiopulmonary bypass in patients with normal acid-base status, whereas Plasma-Lyte 148 triggers a surge of unmeasured anions, persisting throughout bypass. These are likely to be gluconate and/or acetate. Whether surges of exogenous anions during bypass can be harmful requires further study.


Sign in / Sign up

Export Citation Format

Share Document