scholarly journals Emissions Control Scenarios for Transport in Greater Cairo

Toxics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 285
Author(s):  
Rana Alaa Abbass ◽  
Prashant Kumar ◽  
Ahmed El-Gendy

Air pollution is a major cause of premature death in Greater Cairo, but studies on emission control are limited. We used local and international data to predict the impact of transport emission control measures on sector parameters including congestion. The International Vehicle Emission model accordingly estimated quantities of criteria, toxic and global warming emissions produced by on-road vehicles. Emissions were estimated for 2019 base case (2019-BC) and projected for 2030 under the ‘do nothing’ scenario (2030-DNS) and five scenarios: fuel subsidy removal (2030-FSR), road expansions (2030-RE), public transport improvements (2030-PTI), inspection and maintenance (I/M) programs (2030-I/MP), and fuel enhancements (2030-FE). The 2030-FSR would reduce emissions by 11.2% versus 2030-DNS. The 2030-RE resulted in an average increase of 37% in emissions compared with 2030-DNS since it induces more traffic. The 2030-PTI provides alternatives to car travel; hence, cars result in an average drop of 32.8% for all emission types compared with 2030-DNS. The 2030-I/MP exhibited reductions in PM10 and toxic pollutants, of 35–54.8% compared with 2030-DNS. The 2030-FE reduced SOx, benzene and N2O emissions by 91.8%, 81% and 39.1%, respectively, compared with 2030-DNS. The 2030-I/MP is most effective in reducing health damaging pollutants while 2030-PTI positively impacts commuters’ lifestyle.

2021 ◽  
Author(s):  
Mary Rose Angeles ◽  
Sithara Wanni Arachchige Dona ◽  
Dieu Nguyen ◽  
Long Le ◽  
Martin Hensher

Abstract Background Concerns have grown that post-acute sequelae of COVID-19 may affect significant numbers of survivors. However, the analyses used to guide policy-making for Australia’s national and state re-opening plans have not incorporated non-acute illness in their modelling. We therefore develop a model by which to estimate the potential acute and post-acute COVID-19 burden using disability-adjusted life years (DALYs) associated with the re-opening of Australian borders and the easing of other public health measures, with particular attention to longer term, post-acute consequences and the potential impact of permanent functional impairment following COVID-19. Methods A model was developed to estimate the burden of COVID-19 using DALYs. It was then applied to different scenarios drawn from the Doherty Institute’s modelling report, to estimate the likely DALY losses under the Australian national reopening plan. Uncertainty and sensitivity analysis were performed to examine the robustness of the results. Results Mortality was responsible for 72%-74% of the total base case COVID-19 burden. Long COVID and post-intensive care syndrome accounted for at least 19% and 3% of the total base case DALYs respectively. When included in the analysis, permanent impairment could contribute up to 51%-55% of total DALYs lost. Conclusions The impact of Long COVID and potential long-term post-COVID disabilities could contribute substantially to COVID-19 burden in Australia’s post-vaccination setting. As vaccination coverage increases, the share of COVID-19 burden driven by longer-term morbidity rises relative to mortality. As Australia re-opens, better estimates of COVID-19 burden can assist with decision-making on pandemic control measures and planning for the healthcare needs of COVID-19 survivors. Our estimates highlight the importance of valuing the morbidity of post-COVID-19 sequelae, above and beyond simple mortality and case statistics.


2021 ◽  
Vol 13 (4) ◽  
pp. 2414
Author(s):  
Liuzhen Xie ◽  
Qixiang Xu ◽  
Ruidong He

The brick and tile industry was selected to investigate the impact of pollutants emitted from such industry on air quality. Based on the 2018 Zhengzhou City Census data and combined with field sampling and research visits, an emission inventory of the brick and tile industry in Xinmi City was established using the emission factor method. Based on the established emission inventory, the concentrations of SO2, NOX, and PM2.5 emitted by 31 brick and tile enterprises were then predicted using the CALPUFF model (California puff model, USEPA), which had been evaluated for accuracy, and the simulation results were compared with the observed results to obtain the impact of pollutant emissions from the brick and tile industry on air pollution in the simulated region. Results show that SO2, NOX, and PM2.5 emissions from the brick and tile industry in the study area in 2018 were 564.86 tons, 513.16 tons, and 41.01 tons, respectively. The CALPUFF model can simulate the characteristics of meteorological changes and pollutant concentration trends, and the correlation coefficient of the fit curve between the pollutant observed data and the simulated data was higher than 0.8, which can reproduce the impact of key industrial point sources on air quality well. The simulated concentration values and spatial and temporal distribution characteristics of SO2, NOX, PM2.5 in spring, summer, autumn, and winter were obtained from the model simulations. The contribution of pollutant emissions from the brick and tile industry to the monthly average concentrations of SO2, NOX, and PM2.5 in the simulated region were 6.58%, 5.38%, and 1.42%, respectively, with the Housing Administration monitoring station as the receptor point. The brick and tile industry should increase the emission control measures of SO2 and NOX, and at the same time, the emission control of PM2.5 cannot be slackened.


2019 ◽  
Vol 14 (2) ◽  
pp. 024002 ◽  
Author(s):  
Mi Zhou ◽  
Lin Zhang ◽  
Dan Chen ◽  
Yu Gu ◽  
Tzung-May Fu ◽  
...  

2021 ◽  
pp. tobaccocontrol-2021-056651
Author(s):  
M. Victoria Salgado ◽  
Joanne Penko ◽  
Alicia Fernandez ◽  
Raul Mejia

IntroductionTobacco packaging design is conceived to be attractive. Plain packaging of tobacco products reduces this attractiveness by standardising their shape, size, font and colours.MethodsTo evaluate the effect of applying plain packaging to tobacco products on cardiovascular events and mortality in Argentina, we used the Cardiovascular Disease Policy Model–Argentina, a local adaptation of a well-established computer simulation model that projects cardiovascular and mortality events for the population 35–94 years old using local demographic and consumption data, during the period 2015–2024. After a literature review, we estimated that the implementation of plain packaging of tobacco products would result in an absolute decrease in tobacco prevalence of 0.55% (base-case scenario) and performed a sensitivity analysis assuming a higher and lower decrease of 1.01% and 0.095%, respectively.ResultsOver the 2015–2024 period, the decrease in smoking prevalence associated with plain packaging (0.55%) is projected to avert 1880 myocardial infarctions (MI), 820 strokes and 4320 total deaths in Argentina. The higher estimate of smoking prevalence reduction (1.01%) would translate into 3450 fewer MIs, 1490 fewer strokes and 7920 fewer deaths, while the lower estimate of smoking prevalence reduction (0.095%) would result in 330 fewer MIs, 140 fewer strokes and 750 fewer deaths.ConclusionsThe implementation of plain packaging of tobacco products could reduce cardiovascular events in Argentina, even in the absence of other tobacco control measures. Actual health benefits are likely higher than those presented here, since plain packaging may be most impactful by preventing young people from initiating smoking.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Author(s):  
Mihail Zver'kov

To the article the results of the theoretical and experimental researches are given on questions of estimates of the dynamic rate effect of raindrop impact on soil. The aim of this work was to analyze the current methods to determine the rate of artificial rain pressure on the soil for the assessment of splash erosion. There are the developed author’s method for calculation the pressure of artificial rain on the soil and the assessment of splash erosion. The study aims to the justification of evaluation methods and the obtaining of quantitative characteristics, prevention and elimination of accelerated (anthropogenic) erosion, the creation and the realization of the required erosion control measures. The paper considers the question of determining the pressure of artificial rain on the soil. At the moment of raindrops impact, there is the tension in the soil, which is called vertical effective pressure. It is noted that the impact of rain drops in the soil there are stresses called vertical effective pressure. The equation for calculation of vertical effective pressure is proposed in this study using the known spectrum of raindrops. Effective pressure was 1.4 Pa for the artificial rain by sprinkler machine «Fregat» and 5.9 Pa for long distance sprinkler DD-30. The article deals with a block diagram of the sequence for determining the effective pressure of rain drops on the soil. This diagram was created by the author’s method of calculation of the effective pressure of rain drops on the soil. The need for an integrated approach to the description of the artificial rain impact on the soil is noted. Various parameters characterizing drop erosion are considered. There are data about the mass of splashed soil in the irrigation of various irrigation machinery and installations. For example, the rate (mass) of splashed soil was 0.28…0.78 t/ha under irrigation sprinkler apparatus RACO 4260–55/701C in the conditions of the Ryazan region. The method allows examining the environmental impact of sprinkler techniques for analyzes of the pressure, caused by raindrops, on the soil. It can also be useful in determining the irrigation rate before the runoff for different types of sprinkler equipment and soil conditions.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


Author(s):  
Mark Blaxill ◽  
Toby Rogers ◽  
Cynthia Nevison

AbstractThe cost of ASD in the U.S. is estimated using a forecast model that for the first time accounts for the true historical increase in ASD. Model inputs include ASD prevalence, census population projections, six cost categories, ten age brackets, inflation projections, and three future prevalence scenarios. Future ASD costs increase dramatically: total base-case costs of $223 (175–271) billion/year are estimated in 2020; $589 billion/year in 2030, $1.36 trillion/year in 2040, and $5.54 (4.29–6.78) trillion/year by 2060, with substantial potential savings through ASD prevention. Rising prevalence, the shift from child to adult-dominated costs, the transfer of costs from parents onto government, and the soaring total costs raise pressing policy questions and demand an urgent focus on prevention strategies.


2021 ◽  
Vol 13 (13) ◽  
pp. 7251
Author(s):  
Mushk Bughio ◽  
Muhammad Shoaib Khan ◽  
Waqas Ahmed Mahar ◽  
Thorsten Schuetze

Electric appliances for cooling and lighting are responsible for most of the increase in electricity consumption in Karachi, Pakistan. This study aims to investigate the impact of passive energy efficiency measures (PEEMs) on the potential reduction of indoor temperature and cooling energy demand of an architectural campus building (ACB) in Karachi, Pakistan. PEEMs focus on the building envelope’s design and construction, which is a key factor of influence on a building’s cooling energy demand. The existing architectural campus building was modeled using the building information modeling (BIM) software Autodesk Revit. Data related to the electricity consumption for cooling, building masses, occupancy conditions, utility bills, energy use intensity, as well as space types, were collected and analyzed to develop a virtual ACB model. The utility bill data were used to calibrate the DesignBuilder and EnergyPlus base case models of the existing ACB. The cooling energy demand was compared with different alternative building envelope compositions applied as PEEMs in the renovation of the existing exemplary ACB. Finally, cooling energy demand reduction potentials and the related potential electricity demand savings were determined. The quantification of the cooling energy demand facilitates the definition of the building’s electricity consumption benchmarks for cooling with specific technologies.


Sign in / Sign up

Export Citation Format

Share Document