scholarly journals Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review

Toxics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 313
Author(s):  
Subhash Chandra ◽  
Pravin Jagdale ◽  
Isha Medha ◽  
Ashwani Kumar Tiwari ◽  
Mattia Bartoli ◽  
...  

Sulfamethoxazole (SMX) is a frequently used antibiotic for the treatment of urinary tract, respiratory, and intestinal infections and as a supplement in livestock or fishery farming to boost production. The release of SMX into the environment can lead to the development of antibiotic resistance among the microbial community, which can lead to frequent clinical infections. SMX removal from water is usually done through advanced treatment processes, such as adsorption, photocatalytic oxidation, and biodegradation. Among them, the advanced oxidation process using TiO2 and its composites is being widely used. TiO2 is a widely used photocatalyst; however, it has certain limitations, such as low visible light response and quick recombination of e−/h+ pairs. Integrating the biochar with TiO2 nanoparticles can overcome such limitations. The biochar-supported TiO2 composites showed a significant increase in the photocatalytic activities in the UV-visible range, which resulted in a substantial increase in the degradation of SMX in water. The present review has critically reviewed the methods of biochar TiO2 composite synthesis, the effect of biochar integration with the TiO2 on its physicochemical properties, and the chemical pathways through which the biochar/TiO2 composite degrades the SMX in water or aqueous solution. The degradation of SMX using photocatalysis can be considered a useful model, and the research studies presented in this review will allow extending this area of research on other types of similar pharmaceuticals or pollutants in general in the future.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Guohong Wang ◽  
Lin Xu ◽  
Jun Zhang ◽  
Tingting Yin ◽  
Deyan Han

P25 TiO2powders were calcined at different temperatures in a muffle furnace in air. The P25 powders before and after calcination treatment were characterized with XRD FTIR, UV-visible diffuse reflectance spectra, SEM, TEM, HRTEM, and N2adsorption-desorption measurements. The photocatalytic activity was evaluated by the photocatalytic oxidation of methyl orange aqueous solution under UV light irradiation in air. The results showed that calcination treatment obviously influenced the microstructures and photocatalytic activity of the P25 TiO2powders. The synergistic effect of the phase structure, BET surface area, and crystallinity on the photocatalytic of TiO2powders (P25) after calcination was investigated. An optimal calcination temperature () was determined. The photocatalytic activity of TiO2powders calcined at was nearly 2 times higher than that of the uncalcined P25 TiO2. The highest photocatalytic activities of the calcined samples at for 4 h might be ascribed to the enhancement of anatase crystallization and the optimal mass ratio (ca. 1 : 2) of rutile to anatase.


2019 ◽  
Vol 29 (2) ◽  
pp. 189 ◽  
Author(s):  
Tho Truong Nguyen ◽  
Thi Minh Cao ◽  
Hieu Van Le ◽  
Viet Van Pham

The black TiO\(_2\) with substantial Ti\(^3+\) and oxygen vacancies exhibit an excellent photoelectrochemical water-splitting performance due to the improved charge transport the extended visible light response. In this study, black TiO\(_2\) nanotube arrays synthesized by the anodization method, and then, they have been investigated some characterizations by spectroscopic methods such as UV-visible reflectance (UV-vis DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and photoluminescence spectrum. The results showed that some highlighted properties of the black TiO2 nanotube arrays and they could apply for water-splitting effect.


2014 ◽  
Vol 979 ◽  
pp. 343-346 ◽  
Author(s):  
Natthakridta Chanthima ◽  
Jakrapong Kaewkhao

Borophosphate glasses have been synthesized with a Bi2O3concentration of 15.0 to 25.0 mol%, added 2.5 mol% for each concentration, by the normal melt quenching technique at 1200 °C. The physical and optical properties of bismuth borophosphate glass systems have been studied. The glasses are characterized for their physical and optical properties. The density and molar volume of these glasses were found in the range 3.4391 to 3.9338 g/cm3and 52.2515 to 55.7557 cm3/mol, respectively. It was observed that the density and molar volume of these glasses was increased with increasing the concentration of Bi2O3. The absorption spectra of these glasses were recorded in the UV-Visible range. It has been found that, the absorption spectra were shifted to longer wavelength with higher Bi2O3concentration. In addition, the oxygen packing density of glass samples have been also investigated.


2015 ◽  
Vol 17 (2) ◽  
pp. 64-69 ◽  
Author(s):  
Maria Galbas ◽  
Agnieszka Banaszczyk ◽  
Gabriela Dyrda ◽  
Kszysztof Szczegot ◽  
Rudolf Słota

Abstract Hybrid catalysts based on the TiO2 matrix impregnated with Nd, Eu and Yb diphthalocyanines proved effective in oxidation of sulfite ions under irradiation with light from the UV-visible range. Micro- and nano-crystalline anatase powders were used in preparation of the photocatalysts, which were applied in the form of a suspension in the water phase. The reaction yield was found to depend on the phthalocyanine sensitizer used and the conditions of TiO2 impregnation. The best results were obtained when micro-anatase impregnated with Yb-diphthalocyanine was used.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Ousama Ifguis

Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.


2021 ◽  
Author(s):  
Rahma Ben Said ◽  
N. Moutia ◽  
B. Louati ◽  
K. Guidara ◽  
K. Khirouni

Abstract New Zn2P2O7, K2ZnP2O7 and KZn1.5P2O7 compounds were synthesized with conventional solid solid reaction method. The optical properties have been studied by using UV-Visible spectrophotometer. The optical band gaps (Eg) were found to be 3.76 eV, 3.39 eV and 3.59eV respectively. Optical parameters such as refractive index, Cauchy’s parameters and conductivity were deduced. The refractive index fitting in the visible range and the dispersion parameters (E0 and Ed) of these compounds were estimated using the Wemple–DiDomenico model.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
P. Barone ◽  
F. Stranges ◽  
M. Barberio ◽  
D. Renzelli ◽  
A. Bonanno ◽  
...  

The optical and chemical properties of Ag/TiO2nanocomposites were investigated to explore the possibilities of incorporating these new materials in Gratzel photoelectrochemical cells. The nanocomposites were obtained doping TiO2, in both allotropic species anatase and rutile, with silver nanoparticles (grown by laser ablation process). X-ray photoelectron data indicate the absence of Ag-Ti chemical bonds, while measurements of photoluminescence and optical absorbance in UV-visible range show a quench in photoluminescence emission of about 50% and an increase in visible absorbance of about 20%. Measurements of optical band gap, obtained by Tauc’s equation, indicate a variation of about 1.6 eV.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 32349-32357 ◽  
Author(s):  
Xiang-Biao Zhang ◽  
Lei Zhang ◽  
Jin-Song Hu ◽  
Xin-Hua Huang

A novel sheet-like Zn2+ doped Bi2MoO6 photocatalyst with excellent UV-visible-light induced photocatalytic ability was successfully fabricated through a facile hydrothermal synthesis strategy.


2019 ◽  
Vol 31 (12) ◽  
pp. 2995-3003
Author(s):  
Krushitha Shetty ◽  
B.S. Prathibha ◽  
Dinesh Rangappa ◽  
K.S. Anatharaju ◽  
H.P. Nagaswarupa ◽  
...  

MgFe2O4, ZnO and MgFe2O4-ZnO samples were successfully prepared through low temperature solution combustion route. The structural and morphological investigation were accomplished by PXRD, HRSEM, UV-visible and FTIR. The PXRD results point towards the reduced size of synthesized nanocomposites, which was further confirmed by HRSEM studies. Optical properties of the prepared samples were examined by UV-visible spectroscopy. The band gap seems to be widened for prepared nanocomposites compared to pure MgFe2O4. The photocatalytic degradation of methylene blue under sunlight was superior in contrast to pure MgFe2O4 and ZnO. MgFe2O4-ZnO (1:1) acts as the most effective photocatalyst activity compared to pure MgFe2O4 and ZnO. EIS data was proven to be an efficient tool for understanding the electronic properties for photocatalytic studies. The enhanced sunlight-driven photocatalytic activities of MgFe2O4-ZnO nanocomposite is supported by the factors such as quantization effect, band gap widening and efficient charge separation. MgFe2O4-ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications. Additionally, scavenging test was conducted to know the role of all active species during photoelectrocatalysis. This work presents a facile and effective route for the construction of MgFe2O4-ZnO nanocomposites with intriguing structures and multiple functions.


Sign in / Sign up

Export Citation Format

Share Document