scholarly journals The Adenylate Cyclase (CyaA) Toxin from Bordetella pertussis Has No Detectable Phospholipase A (PLA) Activity In Vitro

Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 111 ◽  
Author(s):  
Alexis Voegele ◽  
Mirko Sadi ◽  
Dorothée Raoux-Barbot ◽  
Thibaut Douché ◽  
Mariette Matondo ◽  
...  

The adenylate cyclase (CyaA) toxin produced in Bordetella pertussis is the causative agent of whooping cough. CyaA exhibits the remarkable capacity to translocate its N-terminal adenyl cyclase domain (ACD) directly across the plasma membrane into the cytosol of eukaryotic cells. Once translocated, calmodulin binds and activates ACD, leading to a burst of cAMP that intoxicates the target cell. Previously, Gonzalez-Bullon et al. reported that CyaA exhibits a phospholipase A activity that could destabilize the membrane to facilitate ACD membrane translocation. However, Bumba and collaborators lately reported that they could not replicate these results. To clarify this controversy, we assayed the putative PLA activity of two CyaA samples purified in two different laboratories by using two distinct fluorescent probes reporting either PLA2 or both PLA1 and PLA2 activities, as well as in various experimental conditions (i.e., neutral or negatively charged membranes in different buffers.) However, we could not detect any PLA activity in these CyaA batches. Thus, our data independently confirm that CyaA does not possess any PLA activity.

2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Karolina Skopova ◽  
Barbora Tomalova ◽  
Ivan Kanchev ◽  
Pavel Rossmann ◽  
Martina Svedova ◽  
...  

ABSTRACT The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b+) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b− cells. The nonhemolytic AC+ Hly− bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC+ Hly− mutant also infected mouse lungs as efficiently as the parental AC+ Hly+ strain. Hence, elevation of cAMP in CD11b− cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>107 CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent.


Microbiology ◽  
2014 ◽  
Vol 160 (5) ◽  
pp. 962-969 ◽  
Author(s):  
N. Hegerle ◽  
N. Guiso

Whooping cough is a vaccine-preventable disease presenting with epidemic cycles linked to natural and/or vaccine-driven evolution of the aetiological agent of the disease, Bordetella pertussis. Adenylate cyclase–haemolysin (AC-Hly) is a major toxin produced by this pathogen, which mediates macrophage apoptosis in vitro and in vivo. While current acellular pertussis vaccine (APV) formulations do not include AC-Hly, they all contain pertussis toxin and can comprise filamentous haemagglutinin (FHA), which interacts with AC-Hly, and pertactin (PRN), which has been hypothesized also to interact with AC-Hly. We aimed to study the capacity of specific antibodies to inhibit the in vitro B. pertussis AC-Hly-mediated cytotoxicity of J774A.1 murine macrophages in a background of a changing bacterial population. We demonstrate that: (i) clinical isolates of different types or PRN phenotype are all cytotoxic and lethal in the mouse model of respiratory infection; (ii) lack of PRN production does not impact AC-Hly-related phenotypes; (iii) anti-AC-Hly antibodies inhibit cell lysis whatever the phenotype of the isolate, while anti-PRN antibodies significantly inhibit cell lysis provided the isolate produces this antigen, which might be relevant in vivo for APV-induced immunity; and (iv) anti-FHA antibodies only inhibit lysis induced by isolates collected in 2012, maybe indicating specific characteristics of epidemic lineages of B. pertussis.


2014 ◽  
Vol 289 (44) ◽  
pp. 30702-30716 ◽  
Author(s):  
Johanna C. Karst ◽  
V. Yvette Ntsogo Enguéné ◽  
Sara E. Cannella ◽  
Orso Subrini ◽  
Audrey Hessel ◽  
...  

The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Jawid Nazir Ahmad ◽  
Jana Holubova ◽  
Oldrich Benada ◽  
Olga Kofronova ◽  
Ludek Stehlik ◽  
...  

ABSTRACTMonocytes arriving at the site of infection differentiate into functional effector macrophages to replenish the resident sentinel cells.Bordetella pertussis, the pertussis agent, secretes an adenylate cyclase toxin-hemolysin (CyaA) that binds myeloid phagocytes through complement receptor 3 (CD11b/CD18) and swiftly delivers its adenylyl cyclase enzyme domain into phagocytes. This ablates the bactericidal capacities of phagocytes through massive and unregulated conversion of cytosolic ATP into the key signaling molecule cAMP. We show that exposure of primary human monocytes to as low a concentration as 22.5 pM CyaA, or a low (2:1) multiplicity of infection by CyaA-producingB. pertussisbacteria, blocks macrophage colony-stimulating factor (M-CSF)-driven differentiation of monocytes. CyaA-induced cAMP signaling mediated through the activity of protein kinase A (PKA) efficiently blocked expression of macrophage markers, and the monocytes exposed to 22.5 pM CyaA failed to acquire the characteristic intracellular complexity of mature macrophage cells. Neither M-CSF-induced endoplasmic reticulum (ER) expansion nor accumulation of Golgi bodies, mitochondria, or lysosomes was observed in toxin-exposed monocytes, which remained small and poorly phagocytic and lacked pseudopodia. Exposure to 22.5 pM CyaA toxin provoked loss of macrophage marker expression onin vitrodifferentiated macrophages, as well as on primary human alveolar macrophages, which appeared to dedifferentiate into monocyte-like cells with upregulated CD14 levels. This is the first report that terminally differentiated tissue-resident macrophage cells can be dedifferentiatedin vitro. The results suggest that blocking of monocyte-to-macrophage transition and/or dedifferentiation of the sentinel cells of innate immunity through cAMP-elevating toxin action may represent a novel immune evasion strategy of bacterial pathogens.IMPORTANCEMacrophages are key sentinel cells of the immune system, and, as such, they are targeted by the toxins produced by the pertussis agentBordetella pertussis. The adenylate cyclase toxin (CyaA) mediates immune evasion ofB. pertussisby suspending the bactericidal activities of myeloid phagocytes. We reveal a novel mechanism of potential subversion of host immunity, where CyaA at very low (22 pM) concentrations could inhibit maturation of human monocyte precursors into the more phagocytic macrophage cells. Furthermore, exposure to low CyaA amounts has been shown to trigger dedifferentiation of mature primary human alveolar macrophages back into monocyte-like cells. This unprecedented capacity is likely to promote survival of the pathogen in the airways, both by preventing maturation of monocytes attracted to the site of infection into phagocytic macrophages and by dedifferentiation of the already airway-resident sentinel cells.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 594
Author(s):  
Jesús Arenas ◽  
Elder Pupo ◽  
Coen Phielix ◽  
Dionne David ◽  
Afshin Zariri ◽  
...  

Whooping cough, or pertussis, is an acute respiratory infectious disease caused by the Gram-negative bacterium Bordetella pertussis. Whole-cell vaccines, which were introduced in the fifties of the previous century and proved to be effective, showed considerable reactogenicity and were replaced by subunit vaccines around the turn of the century. However, there is a considerable increase in the number of cases in industrialized countries. A possible strategy to improve vaccine-induced protection is the development of new, non-toxic, whole-cell pertussis vaccines. The reactogenicity of whole-cell pertussis vaccines is, to a large extent, derived from the lipid A moiety of the lipopolysaccharides (LPS) of the bacteria. Here, we engineered B. pertussis strains with altered lipid A structures by expressing genes for the acyltransferases LpxA, LpxD, and LpxL from other bacteria resulting in altered acyl-chain length at various positions. Whole cells and extracted LPS from the strains with shorter acyl chains showed reduced or no activation of the human Toll-like receptor 4 in HEK-Blue reporter cells, whilst a longer acyl chain increased activation. Pyrogenicity studies in rabbits confirmed the in vitro assays. These findings pave the way for the development of a new generation of whole-cell pertussis vaccines with acceptable side effects.


2017 ◽  
Vol 114 (33) ◽  
pp. E6784-E6793 ◽  
Author(s):  
David González-Bullón ◽  
Kepa B. Uribe ◽  
César Martín ◽  
Helena Ostolaza

Adenylate cyclase toxin (ACT or CyaA) plays a crucial role in respiratory tract colonization and virulence of the whooping cough causative bacteriumBordetella pertussis. Secreted as soluble protein, it targets myeloid cells expressing the CD11b/CD18 integrin and on delivery of its N-terminal adenylate cyclase catalytic domain (AC domain) into the cytosol, generates uncontrolled toxic levels of cAMP that ablates bactericidal capacities of phagocytes. Our study deciphers the fundamentals of the heretofore poorly understood molecular mechanism by which the ACT enzyme domain directly crosses the host cell membrane. By combining molecular biology, biochemistry, and biophysics techniques, we discover that ACT has intrinsic phospholipase A (PLA) activity, and that such activity determines AC translocation. Moreover, we show that elimination of the ACT–PLA activity abrogates ACT toxicity in macrophages, particularly at toxin concentrations close to biological reality of bacterial infection. Our data support a molecular mechanism in which in situ generation of nonlamellar lysophospholipids by ACT–PLA activity into the cell membrane would form, likely in combination with membrane-interacting ACT segments, a proteolipidic toroidal pore through which AC domain transfer could directly take place. Regulation of ACT–PLA activity thus emerges as novel target for therapeutic control of the disease.


2013 ◽  
Vol 81 (5) ◽  
pp. 1390-1398 ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Jason M. Warfel ◽  
Christopher D. Paddock ◽  
Tara F. Jones ◽  
...  

ABSTRACTWhooping cough results from infection of the respiratory tract withBordetella pertussis, and the secreted adenylate cyclase toxin (ACT) is essential for the bacterium to establish infection. Despite extensive study of the mechanism of ACT cytotoxicity and its effects over a range of concentrationsin vitro, ACT has not been observed or quantifiedin vivo, and thus the concentration of ACT at the site of infection is unknown. The recently developed baboon model of infection mimics the prolonged cough and transmissibility of pertussis, and we hypothesized that measurement of ACT in nasopharyngeal washes (NPW) from baboons, combined with human andin vitrodata, would provide an estimate of the ACT concentration in the airway during infection. NPW contained up to ∼108CFU/mlB. pertussisand 1 to 5 ng/ml ACT at the peak of infection. Nasal aspirate specimens from two human infants with pertussis contained bacterial concentrations similar to those in the baboons, with 12 to 20 ng/ml ACT. When ∼108CFU/ml of a laboratory strain ofB. pertussiswas culturedin vitro, ACT production was detected in 60 min and reached a plateau of ∼60 ng/ml in 6 h. Furthermore, when bacteria were brought into close proximity to target cells by centrifugation, intoxication was increased 4-fold. Collectively, these data suggest that at the bacterium-target cell interface during infection of the respiratory tract, the concentration of ACT can exceed 100 ng/ml, providing a reference point for future studies of ACT and pertussis pathogenesis.


2013 ◽  
Vol 81 (11) ◽  
pp. 4081-4090 ◽  
Author(s):  
Ilona Bibova ◽  
Karolina Skopova ◽  
Jiri Masin ◽  
Ondrej Cerny ◽  
David Hot ◽  
...  

ABSTRACTBordetella pertussisis a Gram-negative pathogen causing the human respiratory disease called pertussis or whooping cough. Here we examined the role of the RNA chaperone Hfq inB. pertussisvirulence. Hfq mediates interactions between small regulatory RNAs and their mRNA targets and thus plays an important role in posttranscriptional regulation of many cellular processes in bacteria, including production of virulence factors. We characterized anhfqdeletion mutant (Δhfq) ofB. pertussis18323 and show that the Δhfqstrain produces decreased amounts of the adenylate cyclase toxin that plays a central role inB. pertussisvirulence. Production of pertussis toxin and filamentous hemagglutinin was affected to a lesser extent.In vitro, the ability of the Δhfqstrain to survive within macrophages was significantly reduced compared to that of the wild-type (wt) strain. The virulence of the Δhfqstrain in the mouse respiratory model of infection was attenuated, with its capacity to colonize mouse lungs being strongly reduced and its 50% lethal dose value being increased by one order of magnitude over that of the wt strain. In mixed-infection experiments, the Δhfqstrain was then clearly outcompeted by the wt strain. This requirement for Hfq suggests involvement of small noncoding RNA regulation inB. pertussisvirulence.


2004 ◽  
Vol 72 (3) ◽  
pp. 1568-1579 ◽  
Author(s):  
Pádraig J. Ross ◽  
Ed C. Lavelle ◽  
Kingston H. G. Mills ◽  
Aoife P. Boyd

ABSTRACT Adenylate cyclase toxin (CyaA) from Bordetella pertussis can subvert host immune responses allowing bacterial colonization. Here we have examined its adjuvant and immunomodulatory properties and the possible contribution of lipopolysaccharide (LPS), known to be present in purified CyaA preparations. CyaA enhanced antigen-specific interleukin-5 (IL-5) and IL-10 production and immunoglobulin G1 antibodies to coadministered antigen in vivo. Antigen-specific CD4+-T-cell clones generated from mice immunized with antigen and CyaA had cytokine profiles characteristic of Th2 or type 1 regulatory T (Tr1) cells. Since innate immune cells direct the induction of T-cell subtypes, we examined the influence of CyaA on activation of dendritic cells (DC) and macrophages. CyaA significantly augmented LPS-induced IL-6 and IL-10 and inhibited LPS-driven tumor necrosis factor alpha and IL-12p70 production from bone marrow-derived DC and macrophages. CyaA also enhanced cell surface expression of CD80, CD86, and major histocompatibility class II on immature DC. The stimulatory activity of our CyaA preparation for IL-10 production and CD80, CD86, and major histocompatibility complex class II expression was attenuated following the addition of polymyxin B or with the use of DC from Toll-like receptor (TLR) 4-defective mice. However, treatment of DC with LPS alone at the concentration present in the CyaA preparation (0.2 ng/ml) failed to activate DC in vitro. Our findings demonstrate that activation of innate cells in vitro by CyaA is dependent on a second signal through a TLR and that CyaA can promote Th2/Tr1-cell responses by inhibiting IL-12 and promoting IL-10 production by DC and macrophages.


2003 ◽  
Vol 185 (23) ◽  
pp. 6902-6912 ◽  
Author(s):  
Tod J. Merkel ◽  
Philip E. Boucher ◽  
Scott Stibitz ◽  
Vanessa K. Grippe

ABSTRACT Bordetella pertussis, the causative agent of whooping cough, produces a wide array of factors that are associated with its ability to cause disease. The expression and regulation of these virulence factors are dependent upon the bvg locus, which encodes three proteins: BvgA, a 23-kDa cytoplasmic protein; BvgS, a 135-kDa transmembrane protein; and BvgR, a 32-kDa protein. It is hypothesized that BvgS responds to environmental signals and interacts with BvgA, a transcriptional regulator, which upon modification by BvgS binds to specific promoters and activates transcription. An additional class of genes is repressed by the products of the bvg locus. The repression of these genes is dependent upon the third gene, bvgR. Expression of bvgR is dependent upon the function of BvgA and BvgS. This led to the hypothesis that the binding of phosphorylated BvgA to the bvgR promoter activates the expression of bvgR. We undertook an analysis of the transcriptional activation of bvgR expression. We identified the bvgR transcript by Northern blot analysis and identified the start site of transcription by primer extension. We determined that transcriptional activation of the bvgR promoter in an in vitro transcription system requires the addition of phosphorylated BvgA. Additionally, we have identified cis-acting regions that are required for BvgA activation of the bvgR promoter by in vitro footprinting and in vivo deletion and linker scanning analyses. A model of BvgA binding to the bvgR promoter is presented.


Sign in / Sign up

Export Citation Format

Share Document