scholarly journals Sclerostin as Regulatory Molecule in Vascular Media Calcification and the Bone–Vascular Axis

Toxins ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 428 ◽  
Author(s):  
Annelies De Maré ◽  
Stuart Maudsley ◽  
Abdelkrim Azmi ◽  
Jhana O. Hendrickx ◽  
Britt Opdebeeck ◽  
...  

Sclerostin is a well-known inhibitor of bone formation that acts on Wnt/β-catenin signaling. This manuscript considers the possible role of sclerostin in vascular calcification, a process that shares many similarities with physiological bone formation. Rats were exposed to a warfarin-containing diet to induce vascular calcification. Vascular smooth muscle cell transdifferentiation, vascular calcification grade, and bone histomorphometry were examined. The presence and/or production of sclerostin was investigated in serum, aorta, and bone. Calcified human aortas were investigated to substantiate clinical relevance. Warfarin-exposed rats developed vascular calcifications in a time-dependent manner which went along with a progressive increase in serum sclerostin levels. Both osteogenic and adipogenic pathways were upregulated in calcifying vascular smooth muscle cells, as well as sclerostin mRNA and protein levels. Evidence for the local vascular action of sclerostin was found both in human and rat calcified aortas. Warfarin exposure led to a mildly decreased bone and mineralized areas. Osseous sclerostin production and bone turnover did not change significantly. This study showed local production of sclerostin in calcified vessels, which may indicate a negative feedback mechanism to prevent further calcification. Furthermore, increased levels of serum sclerostin, probably originating from excessive local production in calcified vessels, may contribute to the linkage between vascular pathology and impaired bone mineralization.

Author(s):  
Malgorzata Furmanik ◽  
Rick van Gorp ◽  
Meredith Whitehead ◽  
Sadia Ahmad ◽  
Jayanta Bordoloi ◽  
...  

Objective: Vascular calcification is common among aging populations and mediated by vascular smooth muscle cells (VSMCs). The endoplasmic reticulum (ER) is involved in protein folding and ER stress has been implicated in bone mineralization. The role of ER stress in VSMC-mediated calcification is less clear. Approach and Results: mRNA expression of the ER stress markers PERK (PKR (protein kinase RNA)-like ER kinase), ATF (activating transcription factor) 4, ATF6, and Grp78 was detectable in human vessels with levels of PERK decreased in calcified plaques compared to healthy vessels. Protein deposition of Grp78/Grp94 was increased in the matrix of calcified arteries. Induction of ER stress accelerated human primary VSMC-mediated calcification, elevated expression of some osteogenic markers (Runx2, Osterix, ALP, BSP, and OPG), and decreased expression of SMC markers. ER stress potentiated extracellular vesicle (EV) release via SMPD3. EVs from ER stress-treated VSMCs showed increased Grp78 levels and calcification. Electron microscopy confirmed the presence of Grp78/Grp94 in EVs. siRNA knock-down of Grp78 decreased calcification. Warfarin-induced Grp78 and ATF4 expression in rat aortas and VSMCs and increased calcification in an ER stress-dependent manner via increased EV release. Conclusions: ER stress induces vascular calcification by increasing release of Grp78-loaded EVs. Our results reveal a novel mechanism of action of warfarin, involving increased EV release via the PERK-ATF4 pathway, contributing to calcification. This study is the first to show that warfarin induces ER stress and to link ER stress to cargo loading of EVs.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Britt Opdebeeck ◽  
José Millan Luis ◽  
Anthony Pinkerton ◽  
Anja Verhulst ◽  
Patrick D'Haese ◽  
...  

Abstract Background and Aims Vascular media calcification is frequently seen in elderly and patients with chronic kidney disease (CKD), diabetes and osteoporosis. Pyrophosphate is a well-known calcification inhibitor that binds to nascent hydroxyapatite crystals and prevents further incorporation of inorganic phosphate into these crystals. However, the enzyme tissue-nonspecific alkaline phosphatase (TNAP), which is highly expressed in calcified arteries, degrades extracellular pyrophosphate into phosphate ions, by which pyrophosphate loses its ability to block vascular calcification. Here, we aimed to evaluate whether a TNAP inhibitor is able to prevent the development of arterial calcification in a rat model of warfarin-induced vascular calcification. Method To induce vascular calcification, rats received a diet containing 0.30% warfarin and 0.15% vitamin K1 throughout the entire study and were subjected to the following daily treatments: (i) vehicle (n=10) or (ii) 10 mg/kg/day TNAP-inhibitor (n=10) administered via an intraperitoneal catheter from start of the study until sacrifice at week 7. Calcium, phosphorus and parathyroid hormone (PTH) levels were determined in serum samples as these are important determinants of vascular calcification. As TNAP is also expressed in the liver, serum alanine aminotransferase (ALT) and aspartate (AST) levels were analyzed. At sacrifice, vascular calcification was evaluated by measurement of the total calcium content in the arteries and quantification of the area % calcification on Von Kossa stained sections of the aorta. The mRNA expression of osteo/chondrogenic marker genes (runx2, TNAP, SOX9, collagen 1 and collagen 2) was analyzed in the aorta by qPCR to verify whether vascular smooth muscle cells underwent reprogramming towards bone-like cells. Bone histomorphometry was performed on the left tibia to measure static and dynamic bone parameters as TNAP also regulates physiological bone mineralization. Results No differences in serum calcium, phosphorus and PTH levels was observed between both study groups. Warfarin exposure resulted in distinct calcification in the aorta and peripheral arteries. Daily dosing with the TNAP inhibitor (10 mg/kg/day) for 7 weeks significantly reduced vascular calcification as indicated by a significant decrease in calcium content in the aorta (vehicle 3.84±0.64 mg calcium/g wet tissue vs TNAP inhibitor 0.70±0.23 mg calcium/g wet tissue) and peripheral arteries and a distinct reduction in area % calcification on Von Kossa stained aortic sections as compared to vehicle condition. The inhibitory effects of SBI-425 on vascular calcification were without altering serum liver markers ALT and AST levels. Furthermore, TNAP-inhibitor SBI-425 did not modulate the mRNA expression of osteo/chondrogenic marker genes runx2, TNAP, SOX9, collagen 1 and 2. Dosing with SBI-425 resulted in decreased bone formation rate and mineral apposition rate, and increased osteoid maturation time and this without significant changes in osteoclast- and eroded perimeter. Conclusion Dosing with TNAP inhibitor SBI-425 significantly reduced the calcification in the aorta and peripheral arteries of a rat model of warfarin-induced vascular calcification and this without affecting liver function. However, suppression of TNAP activity should be limited in order to maintain adequate physiological bone mineralization.


2021 ◽  
Vol 296 ◽  
pp. 100483
Author(s):  
Yingchun Han ◽  
Jichao Zhang ◽  
Shan Huang ◽  
Naixuan Cheng ◽  
Congcong Zhang ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Megan F Burke ◽  
Caitlin O’Rourke ◽  
Trejeeve Martyn ◽  
Hannah R Shakartzi ◽  
Timothy E Thayer ◽  
...  

Background: Matrix Gla protein (MGP) is an extracellular matrix protein that inhibits bone morphogenetic protein (BMP) signaling in vitro. MGP deficiency induces vascular calcification associated with osteogenic transdifferentiation of endothelial cells (via endothelial-mesenchymal transition, EndMT) and vascular smooth muscle cells (VSMCs). We previously reported that treatment with two pharmacologic inhibitors of BMP signaling reduced aortic calcification in MGP-/- mice. We hypothesized that BMP signaling is essential for EndMT and VSMC osteogenic transdifferentiation induced by MGP deficiency. Methods and Results: Aortic levels of mRNAs encoding markers of osteogenesis (Runx2 and osteopontin) and EndMT (nanog, Sox2, and Oct3/4) were greater in MGP-/- than in wild-type mice (P<0.01 for all). Aortic expression of markers of VSMC differentiation (α-smooth muscle actin, transgelin, and calponin) was less in MGP-/- than in wild-type mice (P<0.001 for all). Treatment of MGP-/- mice with the BMP signaling inhibitor, LDN-193189, reduced expression of both osteogenic and EndMT markers (P<0.05 for all) but did not prevent VSMC de-differentiation. Depletion of MGP in cultured wild-type VSMCs with siRNA specific for MGP (siMGP) was associated with a 30-40% reduction in levels of mRNAs encoding markers of VSMC differentiation (P<0.05 for all), an effect that was not prevented by LDN-193189. Incubation in phosphate-containing media induced greater calcification in siMGP-treated VSMCs than in cells treated with control siRNA (P<0.0001). Treatment with LDN-193189 reduced calcification in siMGP-treated VSMCs (50%, P=0.0003). Conversely, infection of MGP-/- VSMCs with adenovirus specifying MGP increased expression of markers of VSMC differentiation by 60-80% (P<0.01 for all) and decreased calcification by 74% (P=0.03). Conclusions: Inhibition of BMP signaling suppresses osteogenic and EndMT gene programs in MGP-/- mice and reduces calcification of siMGP-treated VSMCs. However, MGP deficiency induces VSMC de-differentiation via a BMP-independent mechanism. These findings suggest that the processes underlying vascular calcification in MGP deficiency are mediated by both BMP signaling-dependent and -independent mechanisms.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 679-679
Author(s):  
Quy N Diep ◽  
Rhian M Touyz ◽  
Ernesto L Schiffrin

9 Omega-3 fatty acids (n-3 FAs) exert a blood pressure-lowering effect in hypertension, possibly by influencing vascular structure. We previously demonstrated that n-3 FAs might induce vascular smooth muscle cell (VSMC) apoptosis, which could exert an effect on structure of blood vessels. This study investigated signaling pathways through which n-3 FAs mediate apoptosis in VSMCs. Cultured Mesenteric VSMCs from Sprague Dawley rats were stimulated with docosahexaenoic acid (DHA), a representative n-3 FA. Morphological changes of apoptosis and DNA fragmentation were examined by phase-contrast microscopy and fluorescence microscopy with Hoechst 33342 staining. To clarify possible pathways of apoptosis, expression of phosphorylated p38 mitogen-activated protein kinases (p38 MAPKs), bax, bcl-2, cytochrome C and peroxisome proliferator-activated receptors-α (PPARs-α) was evaluated by Western blot analysis. DHA treatment induced cell shrinkage, cell membrane blebbing and apoptotic bodies in VSMCs. DHA increased apoptosis (%) in a time-dependent manner to 1.5±0.1, 3.6±0.5, 7.1±0.4, 22.5±0.6, 50.8±1.8 and 61.4±0.9 after 0, 1, 3, 6, 17, and 24 h, respectively. DHA time-dependently activated p38 MAPKs, bax, PPARs-α and cytochrome C with maximal effects obtained after 5, 30 min, 1 h and 3 h, respectively to 551±42, 245±55, 310±12 and 407±14.7 % of controls, respectively. SB-203580 (10 -5 M) and SB-202190 (10 -5 M), selective p38 inhibitors, reduced DHA-elicited apoptosis and expression of PPARs-α, but had no effect on expression of bax or cytochrome C. The present results indicate that DHA induces apoptosis in VSMCs through at least two distinct mechanisms: (i) a p38-dependent pathway that regulates PPAR-α and (ii) a p38-independent pathway via dissipation of mitochondrial transmembrane potential. The death-signaling pathway mediated by DHA may involve an integration of these multiple pathways. By triggering VSMC apoptosis, DHA could play a pathophysiological role in vascular remodeling in cardiovascular disease.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Mengxue Zhang ◽  
Bowen Wang ◽  
Craig Kent ◽  
Lian-Wang Guo

Introduction: Intimal hyperplasia (IH) occurs primarily due to vascular smooth muscle cell (SMC) transformation from quiescent to pathogenic phenotypes (e.g. proliferation and inflammation). Identification and effective targeting of key epigenetic factors governing SMC pathogenic transformation may lead to novel therapeutic methods for prevention of IH. We previously found that globally blocking the bromo- and extra-terminal (BET) epigenetic “reader” family abrogated SMC phenotype transformation and IH. We further investigated the functions of the two BET bromodomains (Bromo1 and Bromo2). Hypothesis: Bromo1 and Bromo2 play different roles in SMC pathogenic transformation. Methods and Results: We pre-treated rat primary aortic SMCs (for 2h) with Olinone or RVX208, inhibitors specific for Bromo1 and Bromo2 respectively, and then stimulated SMC phenotype transformation. Whereas RVX208 abrogated PDGF-BB-stimulated SMC proliferation (BrdU assay) in a dose dependent manner, Olinone enhanced SMC proliferation at high concentrations (>20 μM). RVX208 at 50 μM reduced TNFα-induced SMC inflammation (MCP-1 ELISA) by 80%,but Olinone at the same concentration slightly increased MCP-1. Furthermore, whereas RVX208 abolished PDGF-BB or TNFα-induced STAT3 phosphorylation (Western blotting), Olinone slightly increased phospho-STAT3. Conclusions: Our results reveal that blocking two BET bromodomains respectively produces distinct effects on SMC phenotype transformation, suggesting their differential epigenetic functions. Further elucidation of the underlying molecular mechanisms should contribute to precise targeting of the BET family for optimal mitigation of IH.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Jana Holmar ◽  
Heidi Noels ◽  
Joachim Jankowski ◽  
Setareh Orth-Alampour

Abstract Background and Aims Vascular calcification (VC) is one major complication in patients with chronic kidney disease whereas a misbalance in calcium and phosphate metabolism plays a crucial role. The mechanisms underlying VC have not been entirely revealed to date. Therefore are the studies aiming at the identification and characterization of the mediators/uremic toxins involved in VC ongoing and highly relevant. However, currently many different protocols being used in the studies of vascular calcification processes. This complicates the comparison of study outcomes, composing systematic reviews, and meta-analyses. Moreover, the reproducibility of data is hampered, and the efficiency in calcification research through the lack of a standardized protocol is reduced. In this study, we developed a standardized operating protocol for in vitro and ex vivo approaches to aiming at the comparability of these studies. Method We analysed in vitro and ex vivo experimental conditions to study VC. Vascular smooth muscle cells (HAoSMCs) were used for in vitro experiments and aortas from Wistar rats were used for ex vivo experiments. The influence of the following conditions was studied in detail: • Phosphate and calcium concentrations in calcifying media. • Incubation time. • Fetal calf serum (FCS) concentration. The degree of calcification was estimated by quantification of calcium concentrations that were normalized to protein content (in vitro) or to the dry weight of the aortic ring (ex vivo). Additionally, the aortic rings were stained using the von Kossa method. Optimal conditions for investigating medial vascular calcification were detected and summarized in the step-by-step protocol. Results We were able to demonstrate that the degree and the location of VC in vascular smooth muscle cells and aortic rings were highly dependent on the phosphate and CaCl2 concentration in the medium as well as the incubation time. Furthermore, the VC was reduced upon increasing fetal calf serum concentration in the medium. An optimized protocol for studying vascular calcification in vitro and ex vivo was developed and validated. The final protocol (Figure 1) presented will help to standardize in vitro and ex vivo approaches to investigate the processes of vascular calcification. Conclusion In the current study, we developed and validated a standardized operating protocol for systematic in vitro and ex vivo analyses of medial calcification, which is essential for the comparability of the results of future studies.


1991 ◽  
Vol 260 (5) ◽  
pp. H1713-H1717 ◽  
Author(s):  
U. Ikeda ◽  
M. Ikeda ◽  
T. Oohara ◽  
A. Oguchi ◽  
T. Kamitani ◽  
...  

We have investigated the effect of interleukin 6 (IL-6) on the growth of vascular smooth muscle cells (VSMC) isolated from rat aortas. Murine recombinant IL-6 significantly increased the number of VSMC and stimulated tritiated thymidine incorporation into VSMC in a dose-dependent manner. The IL-6-induced thymidine incorporation into VSMC was totally inhibited by the Ca2+ channel blocker verapamil; however, IL-6 showed no effects on the intracellular Ca2+ level ([Ca2+]i) in VSMC. Antibody against platelet-derived growth factor (PDGF) also totally inhibited the IL-6-induced thymidine uptake. PDGF caused a significant increase in the [Ca2+]i, which was totally inhibited by verapamil. IL-6 mRNA was not detected in unstimulated “quiescent” VSMC, but its expression was stimulated by exposure of VSMC to 10% fetal bovine serum. Immunohistochemical study using anti-PDGF antibody showed that IL-6 stimulated PDGF production in VSMC. These results support the premise that IL-6 is released by VSMC in an autocrine manner and promotes the growth of VSMC via induction of endogenous PDGF production.


Sign in / Sign up

Export Citation Format

Share Document