scholarly journals Toxic or Otherwise Harmful Algae and the Built Environment

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 465
Author(s):  
Wolfgang Karl Hofbauer

This article gives a comprehensive overview on potentially harmful algae occurring in the built environment. Man-made structures provide diverse habitats where algae can grow, mainly aerophytic in nature. Literature reveals that algae that is potentially harmful to humans do occur in the anthropogenic environment in the air, on surfaces or in water bodies. Algae may negatively affect humans in different ways: they may be toxic, allergenic and pathogenic to humans or attack human structures. Toxin-producing alga are represented in the built environment mainly by blue green algae (Cyanoprokaryota). In special occasions, other toxic algae may also be involved. Green algae (Chlorophyta) found airborne or growing on manmade surfaces may be allergenic whereas Cyanoprokaryota and other forms may not only be toxic but also allergenic. Pathogenicity is found only in a special group of algae, especially in the genus Prototheca. In addition, rare cases with infections due to algae with green chloroplasts are reported. Algal action may be involved in the biodeterioration of buildings and works of art, which is still discussed controversially. Whereas in many cases the disfigurement of surfaces and even the corrosion of materials is encountered, in other cases a protective effect on the materials is reported. A comprehensive list of 79 taxa of potentially harmful, airborne algae supplemented with their counterparts occurring in the built environment, is given. Due to global climate change, it is not unlikely that the built environment will suffer from more and higher amounts of harmful algal species in the future. Therefore, intensified research in composition, ecophysiology and development of algal growth in the built environment is indicated.

1967 ◽  
Vol 4 (4) ◽  
pp. 619-623 ◽  
Author(s):  
V. A. Saull

Blue-green algae grow on water-covered carbonate bedrock in the Bonnechere River 2 miles (3.2 km) northwest of Eganville, Renfrew County, Ontario. The algal growth is sunlight-controlled, and the growth patterns are photographic records of present-day solar radiation at the field site. Equivalent patterns may be identifiable in ancient rocks, and if so, could be used to determine paleodirections, and possibly paleolatitudes as well.


1971 ◽  
Vol 17 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Willy Lange

Planktonic blue-green algae are always associated with bacteria. This association leads to enhanced or abundant algal growth when atmospheric carbon dioxide becomes a limiting factor and bacteria-assimilable carbonaceous matter is added. The study was carried out with 12 bacteria-associated blue-green species and 22 aliphatic, bacteria-assimilable carbon compounds. A normal, phosphate-rich Zehnder–Gorham culture medium (No. 11) was used. The bacterial assimilation of the aliphatic matter apparently leads to the production of CO2, which accelerates algal photosynthesis. The observed growth effects are not specific for a particular algal species. They appear to be specific mainly for the bacteria which happen to be associated with the algal cells. Similar growth enhancement was observed when the atmosphere was enriched with 0.5% CO2. With this augmented supply of atmospheric CO2, however, the enhancing effect of organic matter disappeared. The presence of the organic additives also appears to delay bacterial assimilation of organic chelating agents which have been added to keep iron and essential trace elements accessible to the algae in an alkaline medium. Axenic cultures of those algal species which cannot use added carbonaceous compounds did not show any effect of the additive. The results suggest that bacteria-assimilable carbon compounds may be one of the factors leading to algal bloom in lakes and ponds, especially when growth is not limited by the supply of phosphorus or other inorganic elements.


2020 ◽  
Vol 12 (14) ◽  
pp. 16979-16992
Author(s):  
Sharada Jagannath Ghadage ◽  
Vaneeta Chandrashekhar Karande

Blue green algae are the photosynthetic prokaryotes representing a wide distribution in habitat, i.e., temperate, tropical, and polar region.  Paddy fields are the best studied aquatic ecosystems on earth which fulfill all the necessary demands required for blue green algal growth.  Blue green algal role in enhancement of paddy yield has been studied worldwide.  Sustainable utilization of an organism for community use depends on how successfully the ecology of that organism is understood.  Twenty-eight chroococcalean blue green algal taxa were recorded from the study area.  They were taxonomically investigated and found to belong to two families and 11 genera.   The first family Chroococcaceae was the largest family with 10 genera and 26 species while the second family Entophysalidaceae had only one genus and two species.  The genus Gloeocapsa from the family Chroococcaceae exhibited largest species diversity (21.42%), as well as taxa Chlorogloea fritschii of family Entophysalidaceae showed species abundance from the study area.  All heterocystous blue green algal forms are capable of fixation of atmospheric N2.  Many of the non-heterocystous or unicellular blue green algae also have the capacity of N2 fixation.  The taxonomical documentation of chroococcalean blue green algae provide information about such indigenous unicellular blue green algae which will help in the development of niche specific inoculants as biofertilizers for rice fields of the study region.  


Author(s):  
Izaz Khuram ◽  
Nadeem Ahmad ◽  
Samin Jan ◽  
Sophia Barinova

AbstractFreshwater green algal biofouling of boats refers to the accrual of freshwater green algae on boats immersed in water. The current research focused on the morphological characteristics of the isolates, species ecology, and the physicochemical properties of the water at the sampling sites. Two localities, Haji Zai and Sardaryab, were sampled at the Kabul River in the district of Charsadda, Pakistan. Freshwater green algae causing biofouling were isolated from the boats. A total of three genera: Cladophora, Rhizoclonium, and Spirogyra with fifteen species belonging to the families Cladophoraceae and Zygnemataceae were observed. Statistical analysis reveals significant stimulation of green algal species in the boats’ fouled communities by increases in water temperature, conductivity, and Total Suspended Solids (TSS). The algal growth at the Haji Zai site is suppressed by TDS in autumn (Pearson −0.56) and is stimulated by water temperature in spring (Pearson 0.44). At the Sardaryab site, algae were stimulated in spring by pH of water (Pearson 0.61), and suppressed by Total Dissolved Solids (TDS) in autumn (Pearson −0.43). Statistical analysis indicates that pH, conductivity, and temperature are the main factors determining the algal biofouling in the Kabul River.


1977 ◽  
Vol 32 (1-2) ◽  
pp. 118-124 ◽  
Author(s):  
Georg H. Schmid ◽  
Helga List ◽  
Alfons Radunz

An antiserum to lutein agglutinates thylakoids of Nostoc muscorum and Oscillatoria chalybea. From this it follows that lutein is located in the outer surface of the thylakoid membrane of these blue-green algae. The same result is obtained for an antiserum to neoxanthin. As neoxanthin is supposed not to occur in blue-green algae it follows that in this case the antibody action should be directed towards a carotenoid with allenic structure. The antisera to lutein and neoxanthin inhibit in both investigated algal species photosynthetic electron transport on the oxygen-evolving side of photosystem II. Moreover, the inhibition sites of both antisera are identical in Nostoc muscorum and are located between the sites of electron donation of the artificial electron donors tetramethyl benzidene and diphenylcarbazide. In the case of the blue-green alga Oscillatoria chalybea the inhibition sites of both antisera differ. Whereas the inhibition site of the antiserum to neoxanthin lies again between the sites of electron donation of tetramethyl benzidine and di­phenylcarbazide, the inhibition site of the antiserum to lutein appears to be situated at least partially beyond the site of electron donation of tetramethyl benzidine. The degree of inhibition of electron transport reactions with Nostoc muscorum is for both antisera 50 - 60 per cent and is pH-dependent. The pH-optimum lies at pH 7.2 for the antiserum to neoxanthin and at 7.8 for the antiserum to lutein. In comparison to this data the same antisera inhibit electron transport in chloroplasts from higher plants only by 20%. This low degree of inhibition in higher plants is apparently due to the fact that the surfaces of the thylakoids are not accessible to antibodies within the grana. In contrast to this the thylakoid surfaces of blue-green algae are fully accessible because the thylakoids are unstacked. The thylakoids of Oscillatoria chalybea have the tendency towards aggregation. Therefore, the results concerning the accessibility of the carotenoids to antibodies are not so clear cut as with Nostoc muscorum.


1974 ◽  
Vol 20 (10) ◽  
pp. 1311-1321 ◽  
Author(s):  
Willy Lange

Many planktonic blue-green algae produce natural chelators which enable them to grow at high pH's in the absence of artificial chelators. The growth of 10 cyanophytes without an added chelator was found to differ widely with the algal species. Bacteria-containing cultures of Anabaena cylindrica, Anacystis nidulans, Lyngbya sp., Microcystis aeruginosa, Nostoc muscorum, and Phormidium foveolarum produced their own chelators and grew just as well as the controls with artificial chelating agents. Bacteria-containing cultures of Anabaena circinalis, Gloeotrichia echinulata, Oscillatoria rubescens, and Aphanizomenon flos-aquae did not produce chelators and, in the absence of artificial agents, grew poorly or perished early. The alga-produced, extracellular chelators were water-soluble and capable of chelating and controlling metal compounds that would exist in colloidal form at pH's above 7. Accordingly, in the absence of artificial chelators, the non-chelator-forming species grew in the filtrates of the chelator-forming algae the same as in the presence of artificial agents. Bacteria were not involved in the formation of natural chelators, since axenic cultures of Anabaena circinalis, Anacystis nidulans, Microcystis aeruginosa, Nostoc muscorum, and Phormidium foveolarum in the absence of artificial chelators performed about the same as the bacteria-associated species. Also, the filtrates of axenic, chelator-forming Anacystis cultures had the same growth-stimulating effect on non-chelator-forming species as filtrates from bacteria-associated cultures. The natural chelators showed partial thermolability.While the growth of chelator-forming species in the absence of artificial chelators was normal during the logarithmic phase, a peculiar, continuing production of total organic matter was observed with strongly declining cell numbers of Lyngbya, Microcystis, and Phormidium. The terminal cultures of these species were gelatinous, owing to the presence of extracellular matter, probably consisting of polysaccharides.


2011 ◽  
Vol 63 (6) ◽  
pp. 1203-1210 ◽  
Author(s):  
Asha U. M. Lokuhewage ◽  
T. Fujino

Spectral absorption method based on two step linear regression analyses (TSLR) was applied for detection of two strains of cyanobacterium, Microcystis (blue-green algae) from eukaryotic algae. Both blue-green algae, algae and dissolved organic carbon (DOC) were considered from freshwater bodies in Kanto region, Japan. The results show that blue-green species can be detected from other algal species using absorption spectra of water samples. In this study statistical analysis was done by TSLR method, which determined the gradient vectors of single algal species and DOC. We believe that this method might be useful in environmental monitoring of freshwater algae.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 397-406 ◽  
Author(s):  
H Bernhardt ◽  
J Clasen

The elimination of the phosphorus compounds from the River Wahnbach (100 - 150 µg/l Ptot) at the point where it flows into the Wahnbach Reservoir down to a figure of 5 µg/l Ptot has decreased the total phosphorus concentration in the Wahnbach Reservoir to 8 - 10 µg/l Ptot. As a result of this, the impoundment which had been in an eutrophic state became oligotrophic to mesotrophic within 3 years. The blue-green algae which had been predominant disappeared and diatoms grow again every spring. Algal growth has been reduced to such an extent that the transparency has gone up to a Secchi-depth of 10 m and was 6 m on an annual average. This was solely produced by eliminating phosphorus and without eliminating nitrogen at the same time (the annual average N-concentration of all tributaries was 5 mg/l).


1976 ◽  
Vol 22 (8) ◽  
pp. 1181-1185 ◽  
Author(s):  
Willy Lange

Voluminous and often fluffy sheaths surrounding blue-green algal cells are observed (a) in productive natural waters, (b) in bacteria-containing laboratory cultures growing in inorganic nutrient media with added bacteria-assimilable organic matter, and (c) in axenic cultures in the same inorganic media even without added organic matter. The sheaths of bacteria-associated species in inorganic media without added organic matter are, by comparison, thin, and growth is meager. Repeated observations show that voluminous sheaths and vigorous growth of algal species are associated. It is suggested that formation and retention of a voluminous sheath provide a microenvironment around the algal cell where essential nutrients, present at only submarginal levels in the surrounding water, are concentrated and become readily available to the cell. This increase in nutrient concentration above a critical level, in turn, leads to vigorous algal growth. The voluminous sheath produced by the alga is not attacked by alga-associated bacteria when other assimilable organic matter is available: but in the absence of a more suitable food, the bacteria feed on the less desirable gelatinous sheath, markedly reducing its thickness and causing meager algal growth.


Sign in / Sign up

Export Citation Format

Share Document