scholarly journals Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A

Toxins ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 2435-2452 ◽  
Author(s):  
Maureen McKeague ◽  
Ranganathan Velu ◽  
Kayla Hill ◽  
Viola Bardóczy ◽  
Tamás Mészáros ◽  
...  
Keyword(s):  
2021 ◽  
Vol 379 ◽  
pp. 138172
Author(s):  
Maham Liaqat ◽  
Sara Riaz ◽  
Mian Hasnain Nawaz ◽  
Mihaela Badea ◽  
Akhtar Hayat ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 266
Author(s):  
Nataša Žuržul ◽  
Bjørn Torger Stokke

In the present paper, we describe a potassium sensor based on DNA-aptamer functionalized hydrogel, that is capable of continuous label-free potassium ion (K+) monitoring with potential for in situ application. A hydrogel attached to the end of an optical fiber is designed with di-oligonucleotides grafted to the polymer network that may serve as network junctions in addition to the covalent crosslinks. Specific affinity toward K+ is based on exploiting a particular aptamer that exhibits conformational transition from single-stranded DNA to G-quadruplex formed by the di-oligonucleotide in the presence of K+. Integration of this aptamer into the hydrogel transforms the K+ specific conformational transition to a K+ concentration dependent deswelling of the hydrogel. High-resolution interferometry monitors changes in extent of swelling at 1 Hz and 2 nm resolution for the hydrogel matrix of 50 µm. The developed hydrogel-based biosensor displayed high selectivity for K+ ions in the concentration range up to 10 mM, in the presence of physiological concentrations of Na+. Additionally, the concentration dependent and selective K+ detection demonstrated in the artificial blood buffer environment, both at room and physiological temperatures, suggests substantial potential for practical applications such as monitoring of potassium ion concentration in blood levels in intensive care medicine.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Jennifer Cauzzo ◽  
Nikhil Jayakumar ◽  
Balpreet Singh Ahluwalia ◽  
Azeem Ahmad ◽  
Nataša Škalko-Basnet

The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system’s instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 750
Author(s):  
Pasquale Marrazzo ◽  
Valeria Pizzuti ◽  
Silvia Zia ◽  
Azzurra Sargenti ◽  
Daniele Gazzola ◽  
...  

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.


2021 ◽  
Vol 334 ◽  
pp. 129682
Author(s):  
Xiujuan Qiao ◽  
Xin Ma ◽  
Xiaoyu Ma ◽  
Tianli Yue ◽  
Qinglin Sheng

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 586
Author(s):  
Liam Cole ◽  
Diogo Fernandes ◽  
Maryam T. Hussain ◽  
Michael Kaszuba ◽  
John Stenson ◽  
...  

Viruses are increasingly used as vectors for delivery of genetic material for gene therapy and vaccine applications. Recombinant adeno-associated viruses (rAAVs) are a class of viral vector that is being investigated intensively in the development of gene therapies. To develop efficient rAAV therapies produced through controlled and economical manufacturing processes, multiple challenges need to be addressed starting from viral capsid design through identification of optimal process and formulation conditions to comprehensive quality control. Addressing these challenges requires fit-for-purpose analytics for extensive characterization of rAAV samples including measurements of capsid or particle titer, percentage of full rAAV particles, particle size, aggregate formation, thermal stability, genome release, and capsid charge, all of which may impact critical quality attributes of the final product. Importantly, there is a need for rapid analytical solutions not relying on the use of dedicated reagents and costly reference standards. In this study, we evaluate the capabilities of dynamic light scattering, multiangle dynamic light scattering, and SEC–MALS for analyses of rAAV5 samples in a broad range of viral concentrations (titers) at different levels of genome loading, sample heterogeneity, and sample conditions. The study shows that DLS and MADLS® can be used to determine the size of full and empty rAAV5 (27 ± 0.3 and 33 ± 0.4 nm, respectively). A linear range for rAAV5 size and titer determination with MADLS was established to be 4.4 × 1011–8.7 × 1013 cp/mL for the nominally full rAAV5 samples and 3.4 × 1011–7 × 1013 cp/mL for the nominally empty rAAV5 samples with 3–8% and 10–37% CV for the full and empty rAAV5 samples, respectively. The structural stability and viral load release were also inferred from a combination of DLS, SEC–MALS, and DSC. The structural characteristics of the rAAV5 start to change from 40 °C onward, with increasing aggregation observed. With this study, we explored and demonstrated the applicability and value of orthogonal and complementary label-free technologies for enhanced serotype-independent characterization of key properties and stability profiles of rAAV5 samples.


2021 ◽  
Vol 22 (13) ◽  
pp. 6782
Author(s):  
Zixing Chen ◽  
Wenmeng He ◽  
Thomas Chun Ning Leung ◽  
Hau Yin Chung

Cultured keratinocytes are desirable models for biological and medical studies. However, primary keratinocytes are difficult to maintain, and there has been little research on lingual keratinocyte culture. Here, we investigated the effect of Y-27632, a Rho kinase (ROCK) inhibitor, on the immortalization and characterization of cultured rat lingual keratinocyte (RLKs). Three Y-27632–supplemented media were screened for the cultivation of RLKs isolated from Sprague–Dawley rats. Phalloidin staining and TUNEL assay were applied to visualize cytoskeleton dynamics and cell apoptosis following Y-27632 removal. Label-free proteomics, RT-PCR, calcium imaging, and cytogenetic studies were conducted to characterize the cultured cells. Results showed that RLKs could be conditionally immortalized in a high-calcium medium in the absence of feeder cells, although they did not exhibit normal karyotypes. The removal of Y-27632 from the culture medium led to reversible cytoskeletal reorganization and nuclear enlargement without triggering apoptosis, and a total of 239 differentially expressed proteins were identified by proteomic analysis. Notably, RLKs derived from the non-taste epithelium expressed some molecular markers characteristic of taste bud cells, yet calcium imaging revealed that they rarely responded to tastants. Collectively, we established a high-calcium and feeder-free culture method for the long-term maintenance of RLKs. Our results shed some new light on the immortalization and differentiation of lingual keratinocytes.


Sign in / Sign up

Export Citation Format

Share Document