scholarly journals Estimating Vaccine-Driven Selection in Seasonal Influenza

Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 509 ◽  
Author(s):  
Frank Wen ◽  
Sidney Bell ◽  
Trevor Bedford ◽  
Sarah Cobey

Vaccination could be an evolutionary pressure on seasonal influenza if vaccines reduce the transmission rates of some (“targeted”) strains more than others. In theory, more vaccinated populations should have a lower prevalence of targeted strains compared to less vaccinated populations. We tested for vaccine-induced selection in influenza by comparing strain frequencies between more and less vaccinated human populations. We defined strains in three ways: first as influenza types and subtypes, next as lineages of type B, and finally as clades of influenza A/H3N2. We detected spatial differences partially consistent with vaccine use in the frequencies of subtypes and types and between the lineages of influenza B, suggesting that vaccines do not select strongly among all these phylogenetic groups at regional scales. We did detect a significantly greater frequency of an H3N2 clade with known vaccine escape mutations in more vaccinated countries during the 2014–2015 season, which is consistent with vaccine-driven selection within the H3N2 subtype. Overall, we find more support for vaccine-driven selection when large differences in vaccine effectiveness suggest a strong effect size. Variation in surveillance practices across countries could obscure signals of selection, especially when strain-specific differences in vaccine effectiveness are small. Further examination of the influenza vaccine’s evolutionary effects would benefit from improvements in epidemiological surveillance and reporting.

2016 ◽  
Vol 21 (16) ◽  
Author(s):  
Vivian K Leung ◽  
Benjamin J Cowling ◽  
Shuo Feng ◽  
Sheena G Sullivan

The World Health Organization's Global Influenza Surveillance and Response System meets twice a year to generate a recommendation for the composition of the seasonal influenza vaccine. Interim vaccine effectiveness (VE) estimates provide a preliminary indication of influenza vaccine performance during the season and may be useful for decision making. We reviewed 17 pairs of studies reporting 33 pairs of interim and final estimates using the test-negative design to evaluate whether interim estimates can reliably predict final estimates. We examined features of the study design that may be correlated with interim estimates being substantially different from their final estimates and identified differences related to change in study period and concomitant changes in sample size, proportion vaccinated and proportion of cases. An absolute difference of no more than 10% between interim and final estimates was found for 18 of 33 reported pairs of estimates, including six of 12 pairs reporting VE against any influenza, six of 10 for influenza A(H1N1)pdm09, four of seven for influenza A(H3N2) and two of four for influenza B. While we identified inconsistencies in the methods, the similarities between interim and final estimates support the utility of generating and disseminating preliminary estimates of VE while virus circulation is ongoing.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 977
Author(s):  
Kobporn Boonnak ◽  
Chayasin Mansanguan ◽  
Dennis Schuerch ◽  
Usa Boonyuen ◽  
Hatairat Lerdsamran ◽  
...  

Influenza viruses continue to be a major public health threat due to the possible emergence of more virulent influenza virus strains resulting from dynamic changes in virus adaptability, consequent of functional mutations and antigenic drift in surface proteins, especially hemagglutinin (HA) and neuraminidase (NA). In this study, we describe the genetic and evolutionary characteristics of H1N1, H3N2, and influenza B strains detected in severe cases of seasonal influenza in Thailand from 2018 to 2019. We genetically characterized seven A/H1N1 isolates, seven A/H3N2 isolates, and six influenza B isolates. Five of the seven A/H1N1 viruses were found to belong to clade 6B.1 and were antigenically similar to A/Switzerland/3330/2017 (H1N1), whereas two isolates belonged to clade 6B.1A1 and clustered with A/Brisbane/02/2018 (H1N1). Interestingly, we observed additional mutations at antigenic sites (S91R, S181T, T202I) as well as a unique mutation at a receptor binding site (S200P). Three-dimensional (3D) protein structure analysis of hemagglutinin protein reveals that this unique mutation may lead to the altered binding of the HA protein to a sialic acid receptor. A/H3N2 isolates were found to belong to clade 3C.2a2 and 3C.2a1b, clustering with A/Switzerland/8060/2017 (H3N2) and A/South Australia/34/2019 (H3N2), respectively. Amino acid sequence analysis revealed 10 mutations at antigenic sites including T144A/I, T151K, Q213R, S214P, T176K, D69N, Q277R, N137K, N187K, and E78K/G. All influenza B isolates in this study belong to the Victoria lineage. Five out of six isolates belong to clade 1A3-DEL, which relate closely to B/Washington/02/2009, with one isolate lacking the three amino acid deletion on the HA segment at position K162, N163, and D164. In comparison to the B/Colorado/06/2017, which is the representative of influenza B Victoria lineage vaccine strain, these substitutions include G129D, G133R, K136E, and V180R for HA protein. Importantly, the susceptibility to oseltamivir of influenza B isolates, but not A/H1N1 and A/H3N2 isolates, were reduced as assessed by the phenotypic assay. This study demonstrates the importance of monitoring genetic variation in influenza viruses regarding how acquired mutations could be associated with an improved adaptability for efficient transmission.


2017 ◽  
Vol 146 (1) ◽  
pp. 78-88 ◽  
Author(s):  
A. MÖHL ◽  
L. GRÄFE ◽  
C. HELMEKE ◽  
D. ZIEHM ◽  
M. MONAZAHIAN ◽  
...  

SUMMARYInfluenza vaccine effectiveness (VE) has to be estimated anew for every season to explore vaccines’ protective effect in the population. We report VE estimates against laboratory-confirmed influenza A(H1N1)pdm09, A(H3N2) and influenza B among children aged 2–17 years, using test-negative design. Pooled data from two German federal states’ surveillance systems for acute respiratory illness from week 40/2012 to 20/2016 was used, yielding a total of 10 627 specimens. Odds ratios and 95% confidence intervals (95% CIs) for the association between laboratory-confirmed influenza and vaccination status were calculated by multivariate logistic regression adjusting for age, sex, illness onset and federal state. VE was estimated as 1-Odds Ratio. Overall adjusted VE was 33% (95% CI: 24·3–40·7). A strong variation of VE between the seasons and subtypes was observed: highest season- and subtype-specific VE of 86·2% (95% CI: 41·3–96·7) was found against A(H1N1)pdm09 in 7–17-year-olds in 2015/16. Low estimates of VE were observed against A(H3N2) in any season, e.g. 1·5% (95% CI: −39·3–30·3) in 2014/15. Estimates showed a tendency to higher VE among 7–17-year-old children, but differences were not statistically significant. Although our findings are common in studies estimating influenza VE, we discussed several explanations for observed low VE.


2019 ◽  
Vol 9 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Lauren N Powell ◽  
Rodolfo E Bégué

Abstract Background The 2017–2018 influenza season was of high severity. Circulating influenza strains change periodically, making it important to determine vaccine effectiveness on an annual basis, especially for susceptible populations. The primary aim of our study was to estimate the effectiveness of the influenza vaccine among children. Secondary aims were to assess the effect of previous season vaccination and intraseasonal waning of immunity. Methods Children 6 months to 17 years of age tested for influenza during the 2017–2018 season were included. Clinical charts were reviewed, and immunization status was confirmed via the Louisiana Immunization Registry. Influenza vaccine effectiveness (IVE) was estimated in a test-negative design by comparing vaccination status of influenza-positive vs influenza-negative cases. Results A total of 3595 children were included, 26% of whom tested positive for influenza, mostly type A (79%); 15% had received an influenza vaccine prior to illness: 8% among the influenza-positive and 17% among influenza-negative cases (P <.0001). IVE for the 2017–2018 influenza season was 52% overall (95% confidence interval, 38%–62%), 49% for influenza A, and 60% for influenza B. While receiving current year (2017–2018) vaccine had the most effect, receiving the previous year (2016–2017) vaccine had a small benefit and no interference. We found no evidence of waning immunity of the vaccine for the 2017–2018 season. Conclusions IVE was moderate for children. Previous year vaccination had a small but significant benefit and there was no evidence of waning immunity in our cohort. Ongoing national and local surveillance is important to understand the benefit of influenza vaccination.


2013 ◽  
Vol 7 (10) ◽  
pp. 734-740 ◽  
Author(s):  
Slinporn Prachayangprecha ◽  
Jarika Makkoch ◽  
Kamol Suwannakarn ◽  
Preeyaporn Vichaiwattana ◽  
Sumeth Korkong ◽  
...  

Introduction: This study investigated influenza activity in Bangkok, Thailand between June 2009 and July 2012. Methodology: Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to detect influenza viruses among patients with influenza-like illnesses. Results: Of the 6417 patients tested, influenza virus infection was detected in 42% (n = 2697) of the specimens. Influenza A pH1N1 viruses comprised the predominant strain between 2009 and 2010, and seasonal influenza (H3) had a high prevalence in 2011. Laboratory data showed a prevalence and seasonal pattern of influenza viruses. In 2009, influenza activity peaked in July, the rainy season. In 2010, influenza activity happened in two phases, with the initial one at the beginning of the year and another peak between June and August 2010, which again corresponded to the rainy period. Influenza activity was low for several consecutive weeks at the beginning of 2011, and high H3N2 activity was recorded during the rainy season between July and September 2011. However, from the beginning of 2012 through July 2012, pH1N1, influenza H3N2, and influenza B viruses continuously circulated at a very low level. Conclusion: The seasonal pattern of influenza activity in Thailand tended to peak during rainy season between July and September.


2019 ◽  
Vol 24 (31) ◽  
Author(s):  
Ainara Mira-Iglesias ◽  
F Xavier López-Labrador ◽  
Víctor Baselga-Moreno ◽  
Miguel Tortajada-Girbés ◽  
Juan Mollar-Maseres ◽  
...  

Introduction Influenza immunisation is recommended for elderly people each season. The influenza vaccine effectiveness (IVE) varies annually due to influenza viruses evolving and the vaccine composition. Aim To estimate, in inpatients ≥ 60 years old, the 2017/18 trivalent IVE, overall, by vaccine type and by strain. The impact of vaccination in any of the two previous seasons (2016/17 and 2015/16) on current (2017/18) IVE was also explored. Methods This was a multicentre prospective observational study within the Valencia Hospital Surveillance Network for the Study of Influenza and Respiratory Viruses Disease (VAHNSI, Spain). The test-negative design was applied taking laboratory-confirmed influenza as outcome and vaccination status as main exposure. Information about potential confounders was obtained from clinical registries and/or by interviewing patients; vaccine information was only ascertained by registries. Results Overall, 2017/18 IVE was 9.9% (95% CI: −15.5 to 29.6%), and specifically, 48.3% (95% CI: 13.5% to 69.1%), −29.9% (95% CI: −79.1% to 5.8%) and 25.7% (95% CI: −8.8% to 49.3%) against A(H1N1)pdm09, A(H3N2) and B/Yamagata lineage, respectively. For the adjuvanted and non-adjuvanted vaccines, overall IVE was 10.0% (95% CI: −24.4% to 34.9%) and 7.8% (95% CI: −23.1% to 31.0%) respectively. Prior vaccination significantly protected against influenza B/Yamagata lineage (IVE: 50.2%; 95% CI: 2.3% to 74.6%) in patients not vaccinated in the current season. For those repeatedly vaccinated against influenza A(H1N1)pdm09, IVE was 46.4% (95% CI: 6.8% to 69.2%). Conclusion Our data revealed low vaccine effectiveness against influenza in hospitalised patients ≥60 years old in 2017/18. Prior vaccination protected against influenza A(H1N1)pdm09 and B/Yamagata-lineage.


2020 ◽  
Vol 25 (7) ◽  
Author(s):  
Danuta M Skowronski ◽  
Macy Zou ◽  
Suzana Sabaiduc ◽  
Michelle Murti ◽  
Romy Olsha ◽  
...  

Interim results from Canada's Sentinel Practitioner Surveillance Network show that during a season characterised by early co-circulation of influenza A and B viruses, the 2019/20 influenza vaccine has provided substantial protection against medically-attended influenza illness. Adjusted VE overall was 58% (95% confidence interval (CI): 47 to 66): 44% (95% CI: 26 to 58) for A(H1N1)pdm09, 62% (95% CI: 37 to 77) for A(H3N2) and 69% (95% CI: 57 to 77) for influenza B viruses, predominantly B/Victoria lineage.


2009 ◽  
Vol 14 (32) ◽  
Author(s):  
H Uphoff ◽  
S Geis ◽  
A Grüber ◽  
A M Hauri

For the next influenza season (winter 2009-10) the relative contributions to virus circulation and influenza-associated morbidity of the seasonal influenza viruses A(H3N2), A(H1N1) and B, and the new influenza A(H1N1)v are still unknown. We estimated the chances of seasonal influenza to circulate during the upcoming season using data of the German influenza sentinel scheme from 1992 to 2009. We calculated type and subtype-specific indices for past exposure and the corresponding morbidity indices for each season. For the upcoming season 2009-10 our model suggests that it is unlikely that influenza A(H3N2) will circulate with more than a low intensity, seasonal A(H1N1) with more than a low to moderate intensity, and influenza B with more than a low to median intensity. The probability of a competitive circulation of seasonal influenza A with the new A(H1N1)v is low, increasing the chance for the latter to dominate the next influenza season in Germany.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256475
Author(s):  
Nungruthai Suntronwong ◽  
Preeyaporn Vichaiwattana ◽  
Lakkhana Wongsrisang ◽  
Sirapa Klinfueng ◽  
Sumeth Korkong ◽  
...  

Assessing the seroprevalence of the high-risk individuals against the influenza virus is essential to evaluate the progress of vaccine implementation programs and establish influenza virus interventions. Herein, we identified the pre-existing cross-protection of the circulating seasonal influenza viruses among the older-aged population. A cross-sectional study was performed base on the 176 residual sera samples collected from older adults aged 60 to 95 years without a history of vaccination in rural Thailand in 2015. Sera antibody titers against influenza A and B viruses circulating between 2016 and 2019 were determined by hemagglutination inhibition assay. These findings indicated the low titers of pre-existing antibodies to circulating influenza subtypes and showed age-independent antibody titers among the old adults. Moderate seropositive rates (HAI ≥ 1:40) were observed in influenza A viruses (65.9%A(H3N2), 50.0% for A(H1N1) pdm09), and found comparatively lower rates in influenza B viruses (14% B/Yam2, 21% B/Yam3 and 25% B/Vic). Only 5% of individuals possessed broadly protective antibodies against both seasonal influenza A and B virus in this region. Our findings highlighted the low pre-existing antibodies to circulating influenza strains in the following season observed in older adults. The serological study will help inform policy-makers for health care planning and guide control measures concerning vaccination programs.


2017 ◽  
Author(s):  
Xiangjun Du ◽  
Aaron A. King ◽  
Robert J. Woods ◽  
Mercedes Pascual

ABSTRACTInter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus’ antigenic evolution. We propose here a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino-acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States over 10 years, we demonstrate the feasibility of prediction ahead of season and an accurate real-time forecast for the 2016/2017 influenza season.SUMMARYSkillful forecasting of seasonal (H3N2) influenza incidence ahead of the season is shown to be possible by means of a transmission model that explicitly tracks evolutionary change in the virus, integrating information from both epidemiological surveillance and readily available genetic sequences.


Sign in / Sign up

Export Citation Format

Share Document